
AutoNetkit:
Simplifying Large Scale, Open-Source Network Experimentation
Simon Knight 1 Matthew Roughan 1 Askar Jaboldinov 2 Olaf Maennel 2 Iain Phillips 2

1The University of Adelaide, Australia; 2Loughborough University, United Kingdom

Introduction

▶ Build and deploy large-scale emulated network experiments in minutes.
▶High-level design benefits of Software Defined Networking, with existing hardware,
software, and protocols.

▶ Based on network abstractions which hide low-level details: save time, reduce errors,
and conduct reproducible network experiments.

▶Generate configurations and deploy to emulation environments: run real router
software inside virtual machines, realistic and affordable experimentation.

▶ Part of ongoing project to simplify network management using formal methods.

Visual Capture

▶Most network designs start on a whiteboard or in a diagram tool such as Visio, and are
then manually transcribed to a network description.

▶We automate this: draw network in a graphical editor, save as GraphML, use directly
as network description — build your network directly from a diagram.

▶Add custom nodes and edge attributes, e.g. device type, ASN, or link speed.

High-Level Network Design

▶Design networks, not devices.
▶ Built on Python: use standard syntax to work with attributes.
▶Quick and easy configuration, extend to configure new protocols or services.
G_in.update(G_in.nodes('is_router', platform='netkit'), syntax='quagga') # default

for devices in G_phy.groupby('asn').values(): # iBGP full-mesh per AS
rtrs = [d for d in devices if d.is_router] # filter routers
G_ibgp.add_edges_from((s,t) for s in routers for t in routers if s != t)

G_ebgp.add_edges_from(e for e in G_in.edges() if e.src.asn != e.dst.asn)

ank.aggregate_nodes(G_ospf, G_ospf.nodes('is_switch')) # Merge switches
ank.explode_nodes(G_ospf, G_ospf.nodes('is_switch')) # Switches to edges

Trim non intra-AS links
G_ospf.remove_edges_from(l for l in G_ospf.edges() if l.src.asn != l.dst.asn)

for link in G_ospf.edges(): # set defaults
link.cost = 1

Live Feedback

▶ Real-time plotting of overlay graphs using D3.js: live feedback on topology design.

Select overlay: ospf

r4

r5

r6

r7

r1

r2

r3

Automated Resource Allocation

▶Automatic handling of tedious and error-prone low-level details such as IP Addresses.
8/6/12 129.127.12.122:8000/ip.html

1/1129.127.12.122:8000/ip.html

10.0.0.0/27

10.0.0.0/28
(10.0.0.0/29 sw2.as1)

(10.0.0.8/29 loopback)

10.0.0.16/28 10.0.0.16/29 (10.0.0.16/30 cd_r2_r3)

Abstract Network Model

▶Network description: read from GraphML, CSV, JSON into Gin graph.
▶ Build user-defined graphs such as Gip or Gbgp from Gin. Extensible to support new
design patterns and protocols.

▶Compile overlay graphs into Network Information Database: device-based
representation of network, ready to push into configuration templates.

Network
Description G_in

G_ip

G_bgp

G_ospf

NIDBCompiler

Extensible Configuration

▶Generate configuration files from NIDB using plain-text templates.
▶ Separation of configuration syntax and semantics.
▶ Easily configure new devices, or network services such as DNS.

hostname ${node}
password ${node.zebra.password}
!
% for i in node.interfaces:
interface ${i.id}
#Link ${i.description}
ip ospf cost ${i.ospf_cost}
!

% endfor
router ospf
% for l in node.ospf.links:
network ${l.network.cidr} area ${l.area}

% endfor

hostname r5.as1
password 1234
!
interface eth0
#Link to r5.as1 to r1.as1
ip ospf cost 1
!
interface eth1
#Link to r5.as1 to r2.as1
ip ospf cost 1
!

router ospf
network 10.0.0.0/29 area 0

Build, Deploy, Measure

Renderer

Emulation
Topology

Deployment

Network

r1 r2

r3

r4

r5

Measurement

Device
Config

Templates

NIDB

▶ Supports Quagga, Junos, IOS and C-BGP, through Netkit, Junosphere and Dynagen.
▶Automatically push out a new network configuration to an emulation host.
▶Automated data collection from emulated network: e.g. routing tables and traceroutes
▶ Rapid Iteration: modify topology or design, configuration, deployment, measurement
automatically applied.

Getting and Using AutoNetkit

▶ Python-based: runs on Linux, Mac OS X, Windows.
▶ Installation and usage information on website.
▶Open-Source: BSD Licence, available on GitHub.

▶High-Performance: under 7 seconds to configure 1400 router multi-AS network with
OSPF and BGP, including IP addressing and route-reflector iBGP hierarchy.

▶ Verified Bad-Gadget routing oscillation [1]: drew network in < 10 mins, multi-platform
configuration, deployment and measurement. Measured oscillation on IOS and Junos,
but not Quagga — due to Quagga implementation of BGP decision process. Realism of
emulation over simulation: can expose real bugs or implementation decisions.

References and Acknowledgements

T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem and
interdomain routing,” IEEE/ACM Transactions on Networking (TON), vol. 10, Apr. 2002.

This project was supported by the Australian Government through an Australian Postgraduate Award, Australian Research
Council Discovery Grants DP110103505 and DP0985063; and Cisco through Grant 2011-89493(3696). We also would like
to thank Hung Nguyen, Nick Falkner, Joel Obstfeld, and Michael Rumsewicz for their helpful input, and the Netkit, Dynagen
and Junosphere development teams.

www.autonetkit.org

