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Introduction

» Build and deploy large-scale emulated network experiments in minutes.
» High-level design benefits of Software Defined Networking, with existing hardware,
software, and protocols.

» Based on network abstractions which hide low-level details: save time, reduce errors,
and conduct reproducible network experiments.

» Generate configurations and deploy to emulation environments: run real router
software inside virtual machines, realistic and affordable experimentation.

» Part of ongoing project to simplify network management using formal methods.

Visual Capture

» Most network designs start on a whiteboard or in a diagram tool such as Visio, and are
then manually transcribed to a network description.

» We automate this: draw network in a graphical editor, save as GraphML, use directly
as network description — build your network directly from a diagram.

» Add custom nodes and edge attributes, e.g. device type, ASN, or link speed.
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Description

device_type router

asn 1

platform netkit

syntax quagga

host netkithost
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High-Level Network Design

» Design networks, not devices.

» Built on Python: use standard syntax to work with attributes.

» Quick and easy configuration, extend to configure new protocols or services.
G_in.update(G_in.nodes('is_router', platform='netkit'), syntax='quagga') # default
for devices in G_phy.groupby('asn').values(): # iBGP full-mesh per AS

rtrs = [d for d in devices if d.is_router] # filter routers
G_ibgp.add_edges_from((s,t) for s in routers for t in routers if s != t)

G_ebgp.add_edges_from(e for e in G_in.edges() if e.src.asn != e.dst.asn)

ank.aggregate_nodes(G_ospf, G_ospf.nodes('is_switch')) # Merge switches
ank.explode_nodes(G_ospf, G_ospf.nodes('is_switch')) # Switches to edges

# Trim non intra-AS links
G_ospf.remove_edges_from(l for 1 in G_ospf.edges() if l.src.asn !'= l.dst.asn)

for link in G_ospf.edges(): # set defaults
link.cost =1

Live Feedback

» Real-time plotting of overlay graphs using D3.js: live feedback on topology design.
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Automated Resource Allocation

» Automatic handling of tedious and error-prone low-level details such as IP Addresses.
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Abstract Network Model

» Network description: read from GraphML, CSV, JSON into Gj, graph.

» Build user-defined graphs such as Gj, or Gpg, from G;,. Extensible to support new
design patterns and protocols.

» Compile overlay graphs into Network Information Database: device-based
representation of network, ready to push into configuration templates.
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Extensible Configuration

» Generate configuration files from NIDB using plain-text templates.

» Separation of configuration syntax and semantics.
» Easily configure new devices, or network services such as DNS.

hostname r5.asl
password 1234
|

hostname ${node}
password ${node.zebra.password}
|
% for i in node.interfaces:
interface ${i.id} #Link to r5.asl to rl.asl
#Link ${i.description} ip ospf cost 1
ip ospf cost ${i.ospf_cost} |
! interface ethl
% endfor #Link to r5.asl to r2.asl
router ospf ip ospf cost 1
% for 1 in node.ospf.links: !
network ${l.network.cidr} area ${l.area} router ospf
% endfor network 10.0.0.0/29 area 0

Build, Deploy, Measure
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Deployment

Network

» Supports Quagga, Junos, |OS and C-BGP, through Netkit, Junosphere and Dynagen.
» Automatically push out a new network configuration to an emulation host.
» Automated data collection from emulated network: e.g. routing tables and traceroutes

» Rapid lteration: modify topology or design, configuration, deployment, measurement
automatically applied.

Getting and Using AutoNetkit

» Python-based: runs on Linux, Mac OS X, Windows.
» Installation and usage information on website.
» Open-Source: BSD Licence, available on GitHub.

» High-Performance: under 7 seconds to configure 1400 router multi-AS network with
OSPF and BGP, including IP addressing and route-reflector iBGP hierarchy.

» Verified Bad-Gadget routing oscillation [1]: drew network in < 10 mins, multi-platform
configuration, deployment and measurement. Measured oscillation on |OS and Junos,
but not Quagga — due to Quagga implementation of BGP decision process. Realism of
emulation over simulation: can expose real bugs or implementation decisions.
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