AutoNetkit:

Simplifying Large Scale, Open-Source Network Experimentation
lain Phillips *

Askar Jaboldinov © Olaf Maennel *

“Loughborough University, United Kingdom

Simon Knight ! Matthew Roughan !
The University of Adelaide, Australia;

Introduction

» Build and deploy large-scale emulated network experiments in minutes.
» High-level design benefits of Software Defined Networking, with existing hardware,
software, and protocols.

» Based on network abstractions which hide low-level details: save time, reduce errors,
and conduct reproducible network experiments.

» Generate configurations and deploy to emulation environments: run real router
software inside virtual machines, realistic and affordable experimentation.

» Part of ongoing project to simplify network management using formal methods.

Visual Capture

» Most network designs start on a whiteboard or in a diagram tool such as Visio, and are
then manually transcribed to a network description.

» We automate this: draw network in a graphical editor, save as GraphML, use directly
as network description — build your network directly from a diagram.

» Add custom nodes and edge attributes, e.g. device type, ASN, or link speed.

® yEd File Edit View Layout Tools Grouping Windows Help
e OO example.graphml - yEd

BOHD +DON AN QQAQ AR

» General

» Label

v Data
URL

1d
43 OO0 O ¥ Properties View ;

Description

device_type router

asn 1

platform netkit

syntax quagga

host netkithost
» SVG

swl
sw2
r4

High-Level Network Design

» Design networks, not devices.

» Built on Python: use standard syntax to work with attributes.

» Quick and easy configuration, extend to configure new protocols or services.
G_in.update(G_in.nodes('is_router', platform='netkit'), syntax='quagga') # default
for devices in G_phy.groupby('asn').values(): # iBGP full-mesh per AS

rtrs = [d for d in devices if d.is_router] # filter routers
G_ibgp.add_edges_from((s,t) for s in routers for t in routers if s != t)

G_ebgp.add_edges_from(e for e in G_in.edges() if e.src.asn != e.dst.asn)

ank.aggregate_nodes(G_ospf, G_ospf.nodes('is_switch')) # Merge switches
ank.explode_nodes(G_ospf, G_ospf.nodes('is_switch')) # Switches to edges

Trim non intra-AS links
G_ospf.remove_edges_from(l for 1 in G_ospf.edges() if l.src.asn !'= l.dst.asn)

for link in G_ospf.edges(): # set defaults
link.cost =1

Live Feedback

» Real-time plotting of overlay graphs using D3.js: live feedback on topology design.

Select overlay: | ospf]

==

r4

Automated Resource Allocation

» Automatic handling of tedious and error-prone low-level details such as IP Addresses.

@ (10.0.0.0/29 sw2.as1)
10.0.0.0/28 @
@ (10.0.0.8/29 loopback)

10.0.0.0/27 @

10.0.0.16/28 @ 10.0.0.16/29 @ @ (10.0.0.16/30 cd_r2_r3)

—o%+ | THE UNIVERSITY

fADELAIDE

Bl [.oughborough
University

Abstract Network Model

» Network description: read from GraphML, CSV, JSON into Gj, graph.

» Build user-defined graphs such as Gj, or Gpg, from G;,. Extensible to support new
design patterns and protocols.

» Compile overlay graphs into Network Information Database: device-based
representation of network, ready to push into configuration templates.

Network
Description

Extensible Configuration

» Generate configuration files from NIDB using plain-text templates.

» Separation of configuration syntax and semantics.
» Easily configure new devices, or network services such as DNS.

hostname r5.asl
password 1234
|

hostname ${node}
password ${node.zebra.password}
|
% for i in node.interfaces:
interface ${i.id} #Link to r5.asl to rl.asl
#Link ${i.description} ip ospf cost 1
ip ospf cost ${i.ospf_cost} |
! interface ethl
% endfor #Link to r5.asl to r2.asl
router ospf ip ospf cost 1
% for 1 in node.ospf.links: !
network ${l.network.cidr} area ${l.area} router ospf
% endfor network 10.0.0.0/29 area 0

Build, Deploy, Measure

/

Topology

(2
= Yce

interface etho

=

Deployment

Network

» Supports Quagga, Junos, |OS and C-BGP, through Netkit, Junosphere and Dynagen.
» Automatically push out a new network configuration to an emulation host.
» Automated data collection from emulated network: e.g. routing tables and traceroutes

» Rapid lteration: modify topology or design, configuration, deployment, measurement
automatically applied.

Getting and Using AutoNetkit

» Python-based: runs on Linux, Mac OS X, Windows.
» Installation and usage information on website.
» Open-Source: BSD Licence, available on GitHub.

» High-Performance: under 7 seconds to configure 1400 router multi-AS network with
OSPF and BGP, including IP addressing and route-reflector iBGP hierarchy.

» Verified Bad-Gadget routing oscillation [1]: drew network in < 10 mins, multi-platform
configuration, deployment and measurement. Measured oscillation on |OS and Junos,
but not Quagga — due to Quagga implementation of BGP decision process. Realism of
emulation over simulation: can expose real bugs or implementation decisions.

References and Acknowledgements

T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem and
interdomain routing,” IEEE/ACM Transactions on Networking (TON), vol. 10, Apr. 2002.

This project was supported by the Australian Government through an Australian Postgraduate Award, Australian Research
Council Discovery Grants DP1 10103505 and DP0985063; and Cisco through Grant 201 1-89493(3696). We also would like
to thank Hung Nguyen, Nick Falkner, Joel Obstfeld, and Michael Rumsewicz for their helpful input, and the Netkit, Dynagen
and Junosphere development teams.

www.autonetkit.org

