
AutoNetkit: Simplifying Large Scale, Open-Source Network
Experimentation

Simon Knight
University of Adelaide,

Australia

Askar Jaboldinov
Loughborough University,

United Kingdom

Olaf Maennel
Loughborough University,

United Kingdom

Iain Phillips
Loughborough University,

United Kingdom

Matthew Roughan
University of Adelaide,

Australia

ABSTRACT
We present a methodology that brings simplicity to large and com-
plex test labs by using abstraction. The networking community
has appreciated the value of large scale test labs to explore com-
plex network interactions, as seen in projects such as PlanetLab,
GENI, DETER, Emulab, and SecSI. Virtualization has enabled the
creation of many more such labs. However, one problem remains:
it is time consuming, tedious and error prone to setup and configure
large scale test networks. Separate devices need to be configured in
a coordinated way, even in a virtual lab.

AutoNetkit, an open source tool, uses abstractions and defaults
to achieve both configuration and deployment and create such large-
scale virtual labs. This allows researchers and operators to explore
new protocols, create complex models of networks and predict con-
sequences of configuration changes. However, our abstractions
could also allow the discussion of the broader configuration man-
agement problem. Abstractions that currently configure networks
in a test lab can, in the future, be employed in configuration man-
agement tools for real networks.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network Management

General Terms
Design, Experimentation, Management

1. INTRODUCTION
Emulated networks, which run a real router operating systems in-

side virtual machines, offer realistic yet inexpensive network exper-
imentation. However they are time-consuming to configure, which
limits their use in network research. AutoNetkit solves this prob-
lem, providing an integrated platform that allows the experimenter
to visually describe their network experiment at a high-level, with
resource allocation, device configuration handled automatically. The
platform (shown in Figure 1) is Open-Source and generates router
configurations from a network-level abstract representation, alloc-
ates appropriate resources, and deploys the network on emulated
devices. This combination of simple specification with automated

Copyright is held by the author/owner(s).
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
ACM 978-1-4503-1419-0/12/08.

Compiler

Templates

Emulation 
Topology

Deployment

Device
Config

Emulated
Network

r1 r2

r3

r4

r5

Measurement

Device
ConfigDevice
Configs

Network
Model

Physical
Topology

Emulated
Network

r1 r2

r3

r4

r5
Emulated
Network

r1 r2

r3

r4

r5

Figure 1: AutoNetkit: High-level descriptions are transformed
into device-level configurations for deployment to an emulated
network.

deployment and data collection allows for rapid iteration of net-
work design leading to efficient evaluation of “what-if” scenarios,
and providing a platform for research into complex policy and pro-
tocol interactions.

There are a number of platforms which can be used to conduct a
network experiment on. Physical hardware networks are the most
realistic, but are expensive, with a large scale testbed being beyond
the budget of most researchers, and it is time consuming to manu-
ally configure and connect the physical routers. When available,
hardware networks are typically small scale, limiting their useful-
ness in the study of large scale network behaviour.

Simulations, such as C-BGP [7], typically focus on one aspect
of network behaviour, such as the routing decision process. This
allows for large-scale experiments to be conducted on modest com-
puter hardware, but at limited realism: modern networks are a com-
plex interaction of multiple protocols, which cannot be easily sim-
ulated. Furthermore, interpretations of a standard (such as an RFC)
can differ between vendor implementations, and bugs can exist in
vendor software releases. To be relevant to real-world networks,
the research community needs to study the behaviour of real vendor
equipment, inclusive of RFC interpretations and bugs.



Emulated networks sit between these two extremes: by running
the same operating system image as physical routers, they display
the same protocol interactions and decision processes. Using vir-
tual machines cuts costs dramatically with many virtual routers run-
ning on a commodity server.

However, emulated networks retain a main problem of hardware
networks: the routers require configuration. For small networks,
an experimenter may manually enter the configurations, but this ap-
proach doesn’t scale well. While we may not need to plug cables
into the router, the connection topology still needs to be created.
In addition, IP addresses must be allocated and assigned to inter-
faces, routing protocols configured with appropriate AS numbers,
IP addresses, and hostnames. This is time-consuming, tedious, and
error-prone, and must be conducted before the actual network ex-
periment itself is created. If the experiment is to be conducted on a
different emulation platform (such as when comparing vendors) or
if the network topology needs to be changed, the whole configura-
tion process must be repeated.

2. AUTONETKIT
Emulation offers many advantages to network research. An auto-

mated configuration process will reduce the chance of errors, and
free researchers to spend time on the experiments instead of setup.
A standard platform reduces the space required in a paper to de-
scribe the experiment setup, and simplifies reproducibility of ex-
periments. AutoNetkit addresses this configuration problem and
simplifies the process of network experimentation.

The current version builds upon previous work [5], with a num-
ber of key new features. We allow the user to specify the network
topology at a high-level, in a standard graph exchange format. This
allows the use of a GUI-based graph editor, such as yED (www.
yworks.com/products/yed) a freeware graph-drawing tool
similar to Visio or OmniGraffle. In these graphs nodes correspond
to routers, with edges indicating their connectivity. Node and edge
attributes allow hostnames, AS numbers, and link weights to be
specified. From these IGP and BGP topologies can be inferred (e.g.
an eBGP session is created for a link that spans two Autonomous
Systems). Additional attributes allow for advanced iBGP topolo-
gies and DNS databases to be configured. Autonetkit supports both
OSPF and IS-IS IGPs, iBGP design patterns, and a clean abstrac-
tion for inter-domain BGP policy.

AutoNetkit supports Netkit [6], and can create and deploy to Jun-
osphere [2], Dynamips [1], and C-BGP, and provides a tool to run
measurement commands (such as traceroute or viewing the routing
table) across the emulated network. It is easy to deploy the same
experiment to multiple platforms: only the emulation server needs
to be changed.

3. PERFORMANCE
As an example, we used AutoNetkit to setup a bad gadget [3].

We were able to setup and deploy this case-study in less than ten
minutes to each of our supported emulated platforms. We verfied
the expected oscillatory behaviour through automated traceroutes.
On Cisco IOS and Juniper Junos routers the IGP tie-break worked
as expected. However, the routing did not oscillate on Quagga and
C-BGP — due to a difference in one of the final steps of the BGP
best-path selection process. This example illustrates both the im-
portance of testing behaviour on real router platforms, and the ease
of doing so with AutoNetkit.

While AutoNetkit allows rapid design and testing of small case
studies, it is especially useful for large networks. Our combina-
tion of simple visual network design and multi-AS support com-

plete with BGP policy allows for realistic large-scale network ex-
periments.

In another example, we have created a 89-node 132-link network
topology, based on example networks from The Internet Topology
Zoo [4]. AutoNetkit generated the configuration files for this net-
work in less than 3 seconds on a 2007 MacBook Pro. The time
taken to deploy these configuration files to a number of emulation
platforms are shown in Table 1.

Platform Memory (GB) Startup Time (sec)

Netkit 12.6 402
Dynagen/GNS3 20.9 55
Junosphere 136.8 1011
C-BGP 0.020 < 0.2

Table 1: Resource use for 89 router example network.

4. SUMMARY
Our work provides an environment for network researchers to

play and experiment. The tool takes a high-level abstract represent-
ation of a network and compiles it to a choice of emulated envir-
onments. The result is a level of scalability and flexibility that is
hard to achieve in a hardware testbed, but with substantially more
realism than a simulation.

AutoNetkit is fast and is capable of building network configur-
ations in seconds, even for large networks. By using a diagram-
based, high-level abstraction we allow a fast capture of the net-
work design, enabling the examination and investigation of com-
plex “what-if” scenarios.

AutoNetkit is currently used by industry, in teaching, and the
networking research community. It is open-source and written in
Python, providing a multi-platform tool that is freely available on-
line at www.autonetkit.org.

5. ACKNOWLEDGMENTS
This project was supported by the Australian Government through

an Australian Postgraduate Award, Australian Research Council
Discovery Grants DP110103505 and DP0985063, and Cisco Grant
2011-89493(3696). We also would like to thank Hung Nguyen,
Nick Falkner and Michael Rumsewicz for their helpful input.

6. REFERENCES
[1] Dynamips: Cisco 7200 simulator.
[2] Junosphere. http://www.juniper.net/as/en/

products-services/software/
junos-platform/junosphere/.

[3] T. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths
problem and interdomain routing. IEEE/ACM Trans. on
Networking, 2002.

[4] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The Internet Topology Zoo. Selected Areas in
Communications, IEEE Journal on, 29(9):1765–1775, 2011.

[5] H. Nguyen, M. Roughan, S. Knight, N. Falkner, R. Bush, and
O. Maennel. How to build complex, large-scale emulated
networks. In TridentCom, Berlin, Germany, May 2010.

[6] M. Pizzonia and M. Rimondini. Netkit: easy emulation of
complex networks on inexpensive hardware. In TridentCom,
2008.

[7] B. Quoitin. C-BGP, an efficient BGP simulator.
http://cbgp.info.ucl.ac.be/, 2003.


