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Abstract. This paper describes AutoNetkit, an auto-configuratioth frmocom-
plex network emulations using Netkit, allowing large-gcaétworks to be tested
on commodity hardware. AutoNetkit uses an object oriedtapgroach for router
configuration management, significantly reducing the cexipies in large-scale
network configuration. Using AutoNetkit, a user can gereelatge and complex
emulations quickly without errors. We have used AutoNetkguccessfully gen-
erate a number of different large networks with complexir@isecurity policies.
In our test case, AutoNetkit can generate 100,000 lines wtdeonfiguration
code from only 50 lines of high-level network specificatiaue.

1 Introduction

Emulation is a key enabling technology in network resedtailows experiments that
are more realistic than simulations, which would othenbis@xpensive to construct in
hardware. Hardware networks are also difficult to reconégimultiple different test
networks are needed for a large-scale experiment.

However, it is almost as hard to build large-scale, completeorks in emulation
as it is in hardware. Emulation removes issues such as tte togghysically place
interconnecting wires, but still requires configuratiomany devices, including routers
and switches. Router configuration is particularly difftéalcomplex networks [2, 3, 8].
Manual configuration is the root of the problem, becausdribduces the possibility of
human error, and lacks transparency as it is not self-donotinge

We will be examining large-scale networks, which may cant&iousands of
routers. Although this could involve hundreds or thousasidsonfiguration files, the
amount of data which differs between these files is oftertively small, and typically
limited to areas such as IP configuration, community attebuand small changes to
routing weights and policy. The majority of complex configimn changes are reserved
for BGP policy implementations on the network’s edge. Fstance, in a small Netkit
network of only 14 routers, configuration files for these evattan be compressed by a
factor of 40 (using gzip), showing a large amount of reduigglaamd repetition in these
files. We wish to focus on only those items of data which areiatun differentiating
the network configs, not to the vast bulk of configuration infation required to meet
the syntactic requirements of a vendor’s configuration leaggp.

A solution to this problem is the use of fixed templates. A¢gbconfiguration tem-
plate has relatively small amounts of crucial varying imfiation inserted at the correct
point. This provides user with several benefits. From anatperal viewpoint, we now
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change a much smaller amount of data to describe a functj@yistem. Additionally,
an automatic generation mechanism can be made self docmgpest that the changes
made are much easier to track, and if necessary, reverséixBdttemplates can only
go so far. Most complex tasks are still configured manualy.¢xample, network re-
sources such as IP address blocks and BGP community agsilawe still manually
allocated. These tasks can quickly become complex for laeggorks.

This paper is one of the first steps towards fully automatedigaoration, generated
from a description of network capabilities. We describedNgtkit, which provides a
high-level approach to specifying network functionalitye have implemented an au-
tomated mechanism to generate and deploy configuratiomgfaiorks emulated using
the Netkit framework. The task is non-trivial, particulafor BGP (Border Gateway
Protocol) configuration, which is highly technical and noaasparent [8]. We plan to
add support for other platforms in the future, such as Ci&8 &nd Juniper Junos,
described using the same high-level approach.

AutoNetkit enables Netkit users to create larger and mongpdex networks, easily
and quickly. It is written in Python, making it portable andsdy extensible. It also
allows scripted creation of networks so that a series of adtsvcan be created, and
tests run on each.

The results are not just useful for Netkit, they provide gigs into the general
problem of automating network configuration for real netwg~urthermore, emula-
tions powered by AutoNetkit have important application®perational networks. By
being able to construct a fundamental model of the key aspéetnetwork, we are in a
position to carry out tests on this network within an emuwdaavironment. We can also
test proposed changes to our network, such as maintenanpgr@ades, on an emulated
network which reflects our real network. We refer to this oried network model as the
shadow modelThe shadow model of the network allows us to reserve infnasire for
future development, test future growth options, and tordatee the outcome of failure
scenarios. This is also of great benefit to operational;stadfy can have a much better
idea of the performance of their network, under a wide varigtscenarios, without
needing to physically realise that scenario.

AutoNetkit is based on an emulation approach to networkarese This differs
to simulation approaches; in our emulations we run virtnatdances of real routers,
communicating through real routing protocols, whereasuations instead approxi-
mate router behaviour [4]. At the other end of the spectrastbieds [13] provide real
hardware-based networks, and so are more realistic, buhaise expensive and less
flexible. AutoNetkit aims to address the middle ground,waii the user to quickly
and cheaply carry out realistic network research.

2 Background

2.1 Netkit

Netkit is an open source software package which simplifieptiocess of creating and
connecting virtual network devices using User Mode Linusll) [15]. UML allows
multiple virtual Linux systems to be run on the same host kisystem, with each vir-
tual systems retaining standard Linux features. In pdeicaetworking is configured
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using standard tools. Additional software packages camdtalled for extra features,
such as BIND for DNS services, or the Quagga routing suitegga provides an im-
plementation of common routing protocols, allowing a Lirsystem to function as an
IP router.

Netkit provides a set of tools to manage the process of getijinand launching a
UML virtual system. Once an emulated network has been spddifi a configuration
file, Netkit takes care of creating and launching the UML waltsystems. Typically,
Netkit creates one virtual host for each router and launobting services on each of
these routers. Each router has one or more virtual netwtekfates that are connected
using virtual switches. These switches and the routingiseswunning on the routers
allow emulations of large networks.

Netkit simplifies the process of launching the emulated pétwincluding services
and virtual switches. However it does not provide tools ttomate the configuration
of each network device. Netkit emulations can be extendgdrizkone physical host
machine, which we will describe in this paper.

Examples of Netkit networks Figure 1 shows an example, drawn from the test ex-
ample given in [1], of a Netkit network which emulates a sniaternet. To emulate
this network Netkit requires a description of each netwarkice and the links between
them. Routing requires a set of configuration files for eadtvork device. These de-
scribe interface configuration, such as IP addressing, atedior routing protocols,
such as IS-IS or OSPF. Border routers also require the BGRiextouting protocols
to be configured. The network in Figure 1 with only 14 routirgyides requires more
than 500 lines of configuration code, most of which is desatiim an arcane low-level
router configuration language.

One of the strengths of emulation is to build networks lartpan would be af-
fordable to construct in hardware. It is easy to conceiveativorks with thousands of
devices and tens of thousands of lines of configuration cbdk put, at present, emu-
lating these networks is constrained by the configuratiocgss. What is more, many
research projects require evaluations on multiple netastokest robustness and flexi-
bility. The complexity of device configuration means thaating a large-scale network
is a time consuming and error-prone process. This is truedtr physical networks and
emulated networks. Our tool simplifies this configuratioogass: our large-scale ex-
ample network consists of 527 routers connected by 1634, lmkize which would be
infeasible to manually generate.

Other Emulation Tools VNUML [10] is a medium scale software emulator, similar to
Netkit, that uses a User-Mode Linux kernel. There are alseratmulation tools such
as Einar [7]. As AutoNetkit has been designed to be a highHauto-configuration
tool, independent of a specific emulation technique, it ddaad used in these emulation
environments with only minor modifications.

2.2 Router Configuration

Each equipment vendor has a specific configuration langusee to configure their
routers. These languages differ between vendors; to carfthe same feature on two
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Fig. 1. Small Internet Netkit Lab [1]

different routers may involve very different syntax. Thégjuires an operator to learn
a new configuration language for each vendor, limits cod¢apdity, and makes it
difficult to manage a network containing routers from difietvendors.

An example of a Quagga BGP configuration file is below, shovdmglevel con-
figuration requirements. Quagga is an open source routimigqol suite [14], used by
Netkit. Quagga configuration syntax is similar to that uge€isco routers, but very
different to Juniper router syntax. All network related rhars in these configurations,
such as IP addresses and AS numbers, must be consisterst altreswork devices.

router bgp 300
network 200.1.0.0/16
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network 200.1.0.0/17
|

nei ghbor 11.

0.0.10 renote-as 30
nei ghbor 11.0.0.10 descripti on Router as30rl
nei ghbor 11.0.0.10 prefix-list mneQutOnly out
0.0.10 prefix-list defaultln in

nei ghbor 11.
|

ip prefix-list mneQutOnly pernmt 200.1.0.0/16
ip prefix-list mineQutOnly pernmt 200.1.0.0/17
ip prefix-list defaultln permt 0.0.0.0/0

Common router configuration tasks include setting up eatehface and configur-
ing the routing protocols used to exchange routing inforomatA correctly operating
network requires each router’s configuration to be syntaliyi and semantically cor-
rect with configurations consistent across the networlhdse conditions are not met,
the network will not operate correctly. For example, the telrass at each end of a
point to point link must belong to the same subnet.

These configuration files are usually generated by hand —nammiocess with the
time taken being roughly proportional to the number of desim the network. Each
router must have its own configuration file, and manually gatiey each configuration
file is impractical for large networks. Template based camfigion methods [2,8] are an
improvement, but still require network resources to becalted. Efficiently allocating
network resources such as IP address blocks, BGP commutributes can quickly
become complex for large networks.

Our goal is to automate this configuration process. This ismaptex problem for
a hardware device based network: hardware faults, devipendkent configuration lan-
guages, physical device connections, and multiple useesamg the system all must
be considered. Auto-configuration of a software based métigoa more constrained
problem. When using Netkit we are able to dictate the tartpgfggm, and ensure that
the underlying network connections meet the desired stracConfiguration of emu-
lated networks still present a number of configuration peotsl such as routing and se-
curity policy implementation, automatic IP address altmog which will be discussed
in this paper. Existing configuration tools for Netkit such Metkit Interface Utility
for Boring Basic Operations (NIUBBO) [19], do not providestie features and only
allow small networks with very basic routing options. Evéiough languages such
as RPSL [22] and its associated tool RtConfig [23] can be useddmplex BGP
policy specification and configuration generation, thelf stork at the device level.
AutoNetkit aims at a higher level, being able to configurenmoeks from high-level
concepts.

3 AutoNetkit

AutoNetkit automates the process of creating a large angmetwork. The aim
of AutoNetkit is to allow a user to say what they want to achisvith a network,
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such as the business relationship to be expressed or tlwallggiucture of the network
without requiring details of specific device configuratitmstead of assigning specific
values to configuration parameters of the devices, we wane @ble to express high-
level concepts for the network such as: “There must be at l@@s DNS server in
the network”; “Business relationship with neighboring A8®uld be enforced”; and
“OSPF link weights should be assigned using algorithm ABC”.

Network . "
Specification Resource Allocation | Composition Plug-ins

A\

Netkit
Compiler Configuration

Files

Fig. 2. AutoNetkit System Overview.

Policy
Specifications

We adopt an approach inspired by [3]. The system is illustrat Figure 2. The user
specifies a network model which describes the logical sireatf the network and the
resources in the network such as devices, IP address blackddition, the user needs
to specify the rules/policies for the network such as rayginlicies. The rules/policies
pull in fragments (small templates of configuration code)niplement the network.
These components are described below. The system desigvsdhe use of plugins
to interact with the network model. This may involve readargl modifying network
object attributes.

The AutoNetkit language is implemented as an object ortetd@guage using
Python [21]. Object orientated languages are well suitezbtdiguration specification
as they allow natural expression of network devices as tbj6¢12]. To aid in describ-
ing the components of our approach we will use the simple nbuattrivial network
as in Figure 1. The AS level topology and BGP policies appligethese networks are
shown in Figure 3.

3.1 The Network Specification

The network model is specified by the network designer usiag\utoNetkit language.
This model describes the resources, devices, and logicakste of the network. The
details of these objects are described below.

Resources in the network: Each network resource is represented by an object in the
AutoNetkit language, with attributes managed or modifieth®ynetwork policies. The
two main resources are IP address blocks and devices. Eeamifphese are provided
below:
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Fig. 3. AS level topology showing high-level specification of desirinter-AS policies for the
network in Figure 1. Two types of business relationshipsamvn. Customer-provider relation-
ships are shown as the dashed line between two verticathiganj nodes — the AS on the lower
layer is the customer and the AS on the upper layer is the geavirhe peering relationship is
shown as the horizontal solid line between AS20 and AS30fighee also shows two other BGP
policies: load balancing over multiple links, and a backiok.

— |IP address blocks;

### Networks with | P address resource
AS1=Network(1, ['1.0.0.0/8 , '100.0.0.0/8"] )
AS20=Net wor k(20, ['20.0.0.0/8] )

AS100=Net wor k( 100, [’ 100.0.0.0/8"] )
AS200=Net wor k( 200, [’'200.1.0.0/16’] )

— Devices (routers, switches, etc.).
AS1. add_router(’ ASIR1',’ Quagga’',’' Router 1)

In the above example, each AS is given a set of one or more ssltdtecks. These
are used to assign IP addresses to the interfaces in thata&8.rButer is represented
by an object inside the AS object. In this example, a routgecpAS1R1, is added
to an autonomous system, AS1, with the specified initial ealassigned to the router
object attributes. During the configuration process, dbjatside the AS are modified
to satisfy user specified connectivity and policy requirateeFor example, interface
objects will be added to the AS1R1 router object for connégticonfiguration and
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BGP objects will be added to this router object to implemanditess relationships
with other ASs.

Network Logical Structure: The user is also required to specify the logical structure
of the network, describing how the devices will be interoacted. This specification
may include details such as link capacity, and link weighthklweights can be as-
signed to links or interfaces, and are used to control thie g@tisions made by routing
protocols.

A link between routers in the same AS can be easily setup tisendd link com-
mand in default mode, which takes 2 routers as parametersraates a link between
them. It will automatically add an interface to each routad assign an appropriate IP
address to each interface.

### add intra AS |inks
AS100. add_| i nk( AS100R1, AS100R2)
AS100. add_I i nk( AS100R1, AS100R3)

When creating a link that spans two autonomous systems, evéneadd.link com-
mand with specific options. If the remote autonomous systemanaged by another
entity (such as another ISP), its configuration is outsidewfcontrol. In this case,
we cannot automatically assign the remote router an IP addse we provide the op-
tion for a user to choose to manually specify link IP addredaits. This configuration
flexibility is shown in the following example:

### add inter AS |inks

AS30. add_I i nk( AS30R1, AS300, AS300R1, constraints =

{"subnet": *11.0.0.8/30", "intlip": '11.0.0.10",
"int2ip": '11.0.0.9'})

We have described what is specified in the network modelf Bialso important to
consider what is not specified. Everything in the network eligispecified by the user.
For instance, the user indicates which routers are intexacted (although this may be
the output of a network generation program such as BRITE [Hince, it is important
to avoid specifying pieces of no interest to users, evenghahey may be required in
the actual network configuration.

Itis common to implement a point-to-pointlink between twaters as a /30 subnet,
which provides a usable IP address for each end of the lingh Ederface in a link
must be within the same subnet, but the choice of the sulssditig often unimportant,
provided that the allocation is not used again elsewheteinétwork. It is a simple task
for an auto-configuration tool to choose such addresses &ftmoated blocks, saving
the user from needless work in making specific allocatioasttiey are not concerned
with. Automating allocation tasks also reduces the chahbeigs due to human error.

Similarly, creating a link requires the interfaces on eaoti ef the link to be con-
figured, but the specific settings are often unimportant/iding they are consistent at
both ends of the link. An example is routing policies, whick applied to an interface.
Automating allocation tasks is analogous to using a soffveampiler to handle low
level resource allocation, freeing the programmer to whitgh-level code describing
only the functions they are concerned with.
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3.2 Resource Allocation

As discussed, the compiler must realise the high-level odtwnodel, converting it
into a detailed model based on the implementation det&#lladdresses are allocated
by taking the pool of IP addresses specified when the AS objastcreated, dividing
them into the relevant size subnet, and then allocating afinoiA this subnet to the
relevant interface. This automated process avoids canfjitP addresses and ensures
each interface has an IP address belonging to the same subnet

There are some issues that need to be considered careftliig Btep. For instance,
although not needed, it can make it easier for a user if thosgss is deterministic.
Determinism is the property where instantiating the same/onix twice will result in
the same resource allocations being made. However, clmagiubset of the inputs
should not necessarily lead to a widespread change in tHeaflneation and we may
wish to limit the effect of change on the allocations in anansiated network. We refer
to the property of an allocation scheme to limit unnecesshange amsensitivity To
implement this property we usesticky allocatiormechanism.

Sticky allocation allows the allocation to a subset of nadegke network to remain
constant in the face of change, unless the change will forckaage in allocation,
either through address space exhaustion or the additigmksfor hardware that directly
connect to that subset. The major advantage of sticky altotés that it limits the
number of configuration changes that are required on thettdayices, and this allows
more efficient incremental improvements to be carried ouhénetwork. Neither of
these features are required but they are desirable, asrtprpve efficiency and make
debugging easier. Our current tool makes deterministicséinkly allocations.

We show part of the resource allocation for router AS20R1 328, of the example
in Figure 1

et h0 20. 255. 255. 253/ 30
ethl 11.0.0.6/30

lo 127.0.0.1

lo:1 1.1.1.1/30

The interfaces have been automatically configured, withr tfreaddresses either
assigned from the pool of available addresses given for Alsator from the user’s
manually specified settings in the case of an inter AS linle IBop back interfack:1
is also configured on the router for use by the BGP routingaoait

3.3 Rule/Policy Specifications

Rules are used to describe high-level requirements planea oetwork, and range
from routing policies to security and resiliency requirentse To define high-level re-
quirements, the user needs to specify which rules are goiagply to which objects
inside the network as part of the input. Each rule is brokenrdturther to a set of
smaller objects called fragments. A fragment is the smiadiiesnent that can be easily
translated into device specific configuration code. Fragsw@mre described in more de-
tail in the next section. A rule/policy is a precise statetrafrwhich fragments will be
applied to which device objects and the exact values of tiibates that the fragment
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is going to give to the object. Rules are implemented in Atk as objects. Typical
rules are routing policies. For example, to specify therintegateway protocol (IGP)
to be OSPF with configurable area information

## Add 1 GP |l ogic

scope={"type’ :'router’,’ select’:"all’}
paranmeters=[' Area’,’  new , 1] # OSPF paraneters
AS100. add_rul e(’ GSPF’ , scope, par a)

and to enforce business relationship with neighbour ASsl08Sadds thepeering()
policy to all of its sessions.

## BGP policy for enforcing peering rel ationship
scope={"type’':’'session’,’select’:"all’}

par anmet er s={}

Rul e = peering(scope, paranet ers)

AS100. add_BGP_policy(’ Enforce busi ness relationship , Rule)

AutoNetkit has a library of rules (i.e., network serviceslipies) implemented.
These include rules to set up DNS server, a large set of diff@dGP policies to main-
tain business relationship, contract obligations, ségand back-up requirements. The
user needs to specifies in the rule specification which okth@les are going to be used
in each network. Each rule requires a “scope” and a “paransigtgout. The “scope”
defines the BGP sessions that the policy applies to, and trafipeters” field is used
to provide special parameters to the policies.

3.4 Fragments

Many router configurations have a high degree of similawtyich allows for the script
based configuration methods discussed previously. It atsplifies the configuration
process, allowing most device specific configuration to béopmed with simple tem-
plates. These templates are filled in with the relevant walt@m a resource database,
created based on the network model.

Some components of a router configuration are only neededrtairtrouters, e.g.,
we only require eBGP on edge routers. Simple templates ssaueful in these cases.
Instead we use the concept of fragments [3]: small piecesfiguration code, each
typically controlling a single configuration aspect. Eacdgiment is defined by the ob-
ject attributes that it will creates or modifies.

Complex tasks require several fragments. AutoNetkit atswiges an extensive li-
brary of fragments that can be used to construct the polidiesse fragments can be
used to implement almost all realistic BGP policies inchgdblack hole, Martian fil-
ters, and peering. For example, a peering policy can beseghhy using one fragment
to mark all routes on ingress with a community that encodespttering type of the
BGP session. On egress the routes are filtered based on thewdoiy tags and the
peering type of the session, using another fragment. Thengetype, a parameter of
the session, determines which fragment (BGP statemengeioAdditional fragments
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can be used if complex traffic policies are implemented uiegoeering type. As dis-
cussed, we have used these fragments to implement a lidrBy® policies, including
load balancing and a back-up link, as per the example of Eigjur

3.5 Plugins

AutoNetkit has been designed to be extensible, allowinguger to interact with the
network structure using plugins. We have implemented aiphhich exports the net-
work as a graph, where routers are represented by nodesiiadhii edges. Operations
can be carried out on this graph, and the results appliedtoable AutoNetkit network
objects. The NetworkX [18] Python package is used to reptegad analyse net-
works. This package includes common graph analysis fumetsoich as shortest path
or resiliency algorithms, which can be used to study the agtinodel in AutoNetkit.

The graph structure allows existing research to be impleéetdn a Netkit network.
As an example we have implemented a standard traffic engmgeaigorithm. The al-
gorithm optimises link utilization (minimises congestjphy adapting the link weights
used by the network’s routing protocol to choose shortestg@]. The result is that
traffic is balanced across network paths (it may be surgyitat this simple form of
traffic engineering is effective, but previous results [8)& shown it can be almost as
good as MPLS). Our implementation uses the network modelritesl above via the
plugin architecture, as well as a user provided traffic maffhis algorithm is used
to analyse and optimise a network created using AutoNegkid, apply the optimised
weights to the network, where they are used to generate {h®pypate configuration
file entries.

We have also used simple mathematical functions to deligesepful network re-
sults. The NetworkX function to find the central node in a ¢grépused for optimal
server placement: the DNS server in each network can be atitatly set to be the
central node in the network. AutoNetkit's plugin framewailows users to easily apply
mathematical research to networking, and then analysesthéts in an emulated en-
vironment. AutoNetkit includes tools to verify the corregiplication of these weights,
which we will describe later.

3.6 Compiler

The compiler produces configuration files for the Netkit degi based on the network
description, the rule/policy specification, and the lilgraf available rules and frag-
ments.

The compilation process starts by creating an object foh elwice declared in
the network specification. It then examines the rules, trgatn object for each rule,
and attaching relevant device objects. The template imgteation of each rule is then
read, and the fragment objects for that rule created. Thaggnent objects are then
attached to the appropriate device objects, as specifiduehyte.

After the fragment objects have been attached to the devieeis, the individual
device configurations take place. The compiler first conégunterface objects, ass-
ginging the IP address and network mask to each interfa@xlas per the resource
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allocation process described earlier. The router objeetth@n configured, with the in-
ternal routing protocols configured first using the IGP fragirobjects, and BGP using
BGP fragments, if required.

Fragments within each device and across different deviegshave a dependency
relationship: some fragments need to be applied beforettiersy and multiple frag-
ments can modify the same attribute in the device objecis.i$lespecially the case for
BGP fragments. One of the most important tasks of the comigite resolve these de-
pendencies. AutoNetkit provides two simple methods toestihese dependency prob-
lems. First, all fragments are given a unique sequence nuyonded to capture the order
dependency between fragments. A fragment with small seguemmber is always ap-
plied before a segment with larger sequence number. Seeafted sequencing if two
fragments still attempt to modify the same attribute, Audtihit issues a warning and
does not configure the device where conflict occurs. In thée tlae user must manually
resolve the conflict. While these two simple methods areessfal in resolving all test
networks, more advanced methods are needed to resolveeodgpendencies. These
are the topics of our future research.

Once the conflicts are resolved, the device objects are aoefigand written in
Quagga syntax to the configuration files, ready for deploytmen

3.7 Deployment and Verification

AutoNetkit simplifies the process of automatically deptaythe generated configura-
tion files to a Linux machine running Netkit. The deploymermidule copies across the
configuration files, stops any previous Netkit labs, stdrésrtew lab, and verifies that
all hosts have been successfully started.

The deployment module can verify that the output of the ojs@tion plugin, de-
tailed previously, was successfully applied to the runmatyvork. It compares the out-
put of the NetworkX shortest paths algorithm for each sowlestination pair in the
network, against thtraceroutecommand output for the Netkit network each pair in the
network.

3.8 Emulation Scalability

The use of software to emulate a network simplifies some #spébardware networks,
but also introduces new considerations. The most impoigahe resources the virtual
systems requires from the host system, including memorypamcessor usage, which
increase with emulated network size.

A typical Netkit virtual system requires a minimum of 6MB RAfxbm the physical
host for the basic services required to run Linux, such akeheel. This increases to ap-
proximately 16 MB of RAM if the virtual system is to act as a teuMore memory are
required to provide network monitoring tools, sucht@eroute ping, andtcpdump
Packet inspection can be performed uditigdump but is more suitable for debugging
than large-scale traffic analysis: due to resource conssramulated networks are bet-
ter suited to testing protocols than large traffic flows.

Resource constraints limit the number of virtual systenas tan be run on a sin-
gle Linux machine. To emulate large networks we run emutation multiple Linux
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machines, which are connected using ysétch [5]. The size of the emulated network
is then limited only by number of physical Linux hosts avhit rather than the re-
sources of a single machine. This allows large-scale siimakto be deployed using a
number of inexpensive Linux machines. We have successiayg vdeswitch to scale
Netkit emulated networks to several hundred virtual rajtacross multiple physical
machines.
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Fig. 4. Basic memory consumption with BGP and OSPF (left) and thétiadd! memory con-
sumption withping andtcpdumprunning inside the virtual machines (right).

Memory consumption on these virtual routers grows lineaiity the size of the
network, for both case of with and without running applioas. This is shown in Fig-
ure 4. Note that the memory consumption also depends onzbheobihe data inside
the applications. For example, large BGP tables can easilgiane more than 16MB.

3.9 Visualization

AutoNetkit allows the user to plot their networks, provigivisual confirmation of de-
signs and aiding in troubleshooting. The NetworkX graphreéspntations discussed
previously are used with pydot [20], a library to plot Netk&Ergraphs using Graphviz [11]
graph visualisation software. We have made formattingornistations to better suit the
display of computer networks, which can be be seen in Figufiéhs figure shows a
section of the visualisation generated from AutoNetkisdzhon the lab described in
Figure 1. Different link types can be seen; internal links slhown as solid lines and
external links are shown as dashed lines. Interface andesuletails are also visible.
Future work will add additional visualisation features.

4 AutoNetkit Performance: A Case Study

We have evaluated AutoNetkit performance in two areasabddl, by generating a
large-scale test network, and ease of use, by comparing\tikit to manually config-
uring the demonstration network shown in Figure 1.
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Fig. 5. Visualisation output showing the topology for AS20 in Figur. IGP links are shown as
solid lines and eBGP links are shown as dashed lines. Resoauch as interface numbers and
IP addresses have been automatically allocated by AutdiNetk

A large-scale network can be quickly and easily. For ingate configure a ran-
domly generated network of 100 ASs, with 527 routers corateby 1634 links, over
100,000 lines of device configuration code are needed. AettiiNonly requires 50
lines of high-level code, consisting of loops to generathesS, add routers to the AS,
and then interconnect these routers. Generating this mletimaluding configuration of
OSPF, BGP, and DNS, is fast: AutoNetkit takes only 15 secamdstandard desktop
computer, with a 3 GHz Intel Core2 Duo CPU processor.

We also configured the Netkit demonstration network, showfigure 1. This net-
work may appear simple compared to large-scale networkstiiirequires extensive
configuration, including OSPF, BGP, DNS, and appropriateuece allocations. This
adds a significant overhead to testing a simple network.dJ&utoNetkit, the network
model and policies for the this network can be described i likes of AutoNetkit
code, compared to 500 lines of device-specific configuratimie. The AutoNetkit code
is high-level and descriptive, and allows the user to deti thieir network, not device
configuration. It is also easy to alter the network: addiriglkadr router is simple in Au-
toNetkit, a task which is tedious and error-prone when mbéyaeeating configuration
files.

5 Discussion

AutoNetkit achieves the goal of automating network configion for Netkit, and pro-
vides a number of benefits:
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— Scale at lower costhe cost (in time) for configuring a large network is reduced]
is sublinear (rather than the linear costs of generatingu@e network effectively
by hand).

— Reliability: the reliability of emulations is improved, in the sense that can be
more confident that the emulated network is exactly what wenihed, i.e., there are
no misconfigurations that might stall routing, and hencengleathe performance of
the network.

— Consistencyconsistency is part of reliability (consistency acrosgeosiis needed),
but it also involves consistency between the network, aadiherators view of the
network, which is critical for ongoing design, debuggingddransparency.

— Flexibility: our approach maintains the flexibility of Netkit to emulatenplex net-
works and protocols.

— Scripting: AutoNetkit is written in Python, and so can be easily scdgtdo larger
sets of experiments, for instance creating multiple instarof networks to compare
performance of different configuration.

Another way to view the activity is by analogy to programmihgthe grim old
days, when programs were written in machine code, only a fewsgcould program,
and they were highly specialized to particular machinesgkxims were typically very
limited in size, and complexity. The advent of high-levedgramming languages made
programming a commodity skill, and separated the meanipgagrams from the par-
ticular hardware. Larger and more complex programs havdtegs More recently,
software-engineering and related programming tools tliolylintegrated programming
environments, standard portable APIs, and specificatioguages have helped enable
very large software projects, with what could be descritsea jproduction line for code.

One view of AutoNetkit is as a high-level language and coergdr Netkit. Similar
to the benefit that high-level languages bring to prograngmutoNetkit can make the
network configuration process much easier, and enable éondaf large and complex
networks.

6 Conclusions and Future Work

We have developed AutoNetkit, a tool that allows a user tidyegenerate large-scale
emulated networks. AutoNetkit has been successfully usegeherate a number of
test networks, including one of the principal Netkit tedddadescribed in Figure 1.
AutoNetkit will be made available dit t p: / / bandi coot . mat hs. adel ai de.
edu. au/ Aut oNet ki t /.

There are many additional features we intend to implemettierfuture. We plan
to extend AutoNetkit to other emulators and to real netwgariduding deployment to
hardware networks consisting of Cisco and Juniper devideswill also implement
additional features in AutoNetkit for other routing protds;, such as RIP and IS-IS,
support for MPLS, and filtering using Access Control Listss important for an auto-
configuration tool to test generated configurations. Weenily perform path checking
usingtraceroute and will expand this verification in future AutoNetkit déopment.
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