
How to Build Complex, Large-Scale Emulated Networks

Hung Nguyen⋆ Matthew Roughan⋆ Simon Knight⋆ Nick Falkner⋆

Olaf Maennel‡ Randy Bush§

⋆University of Adelaide, Australia ‡ University of Loughborough, United Kingdom
§IIJ, Japan

Abstract. This paper describes AutoNetkit, an auto-configuration tool for com-
plex network emulations using Netkit, allowing large-scale networks to be tested
on commodity hardware. AutoNetkit uses an object orientated approach for router
configuration management, significantly reducing the complexities in large-scale
network configuration. Using AutoNetkit, a user can generate large and complex
emulations quickly without errors. We have used AutoNetkitto successfully gen-
erate a number of different large networks with complex routing/security policies.
In our test case, AutoNetkit can generate 100,000 lines of device configuration
code from only 50 lines of high-level network specification code.

1 Introduction

Emulation is a key enabling technology in network research.It allows experiments that
are more realistic than simulations, which would otherwisebe expensive to construct in
hardware. Hardware networks are also difficult to reconfigure if multiple different test
networks are needed for a large-scale experiment.

However, it is almost as hard to build large-scale, complex networks in emulation
as it is in hardware. Emulation removes issues such as the need to physically place
interconnecting wires, but still requires configuration ofmany devices, including routers
and switches. Router configuration is particularly difficult in complex networks [2,3,8].
Manual configuration is the root of the problem, because it introduces the possibility of
human error, and lacks transparency as it is not self-documenting.

We will be examining large-scale networks, which may contain thousands of
routers. Although this could involve hundreds or thousandsof configuration files, the
amount of data which differs between these files is often relatively small, and typically
limited to areas such as IP configuration, community attributes, and small changes to
routing weights and policy. The majority of complex configuration changes are reserved
for BGP policy implementations on the network’s edge. For instance, in a small Netkit
network of only 14 routers, configuration files for these routers can be compressed by a
factor of 40 (using gzip), showing a large amount of redundancy and repetition in these
files. We wish to focus on only those items of data which are crucial in differentiating
the network configs, not to the vast bulk of configuration information required to meet
the syntactic requirements of a vendor’s configuration language.

A solution to this problem is the use of fixed templates. A typical configuration tem-
plate has relatively small amounts of crucial varying information inserted at the correct
point. This provides user with several benefits. From an operational viewpoint, we now

2 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

change a much smaller amount of data to describe a functioning system. Additionally,
an automatic generation mechanism can be made self documenting, so that the changes
made are much easier to track, and if necessary, reverse. Butfixed templates can only
go so far. Most complex tasks are still configured manually. For example, network re-
sources such as IP address blocks and BGP community attributes are still manually
allocated. These tasks can quickly become complex for largenetworks.

This paper is one of the first steps towards fully automated configuration, generated
from a description of network capabilities. We describe AutoNetkit, which provides a
high-level approach to specifying network functionality.We have implemented an au-
tomated mechanism to generate and deploy configurations fornetworks emulated using
the Netkit framework. The task is non-trivial, particularly for BGP (Border Gateway
Protocol) configuration, which is highly technical and non-transparent [8]. We plan to
add support for other platforms in the future, such as Cisco IOS and Juniper Junos,
described using the same high-level approach.

AutoNetkit enables Netkit users to create larger and more complex networks, easily
and quickly. It is written in Python, making it portable and easily extensible. It also
allows scripted creation of networks so that a series of networks can be created, and
tests run on each.

The results are not just useful for Netkit, they provide insights into the general
problem of automating network configuration for real networks. Furthermore, emula-
tions powered by AutoNetkit have important applications inoperational networks. By
being able to construct a fundamental model of the key aspects of a network, we are in a
position to carry out tests on this network within an emulated environment. We can also
test proposed changes to our network, such as maintenance orupgrades, on an emulated
network which reflects our real network. We refer to this mirrored network model as the
shadow model. The shadow model of the network allows us to reserve infrastructure for
future development, test future growth options, and to determine the outcome of failure
scenarios. This is also of great benefit to operational staff; they can have a much better
idea of the performance of their network, under a wide variety of scenarios, without
needing to physically realise that scenario.

AutoNetkit is based on an emulation approach to network research. This differs
to simulation approaches; in our emulations we run virtual instances of real routers,
communicating through real routing protocols, whereas simulations instead approxi-
mate router behaviour [4]. At the other end of the spectrum, testbeds [13] provide real
hardware-based networks, and so are more realistic, but also more expensive and less
flexible. AutoNetkit aims to address the middle ground, allowing the user to quickly
and cheaply carry out realistic network research.

2 Background

2.1 Netkit

Netkit is an open source software package which simplifies the process of creating and
connecting virtual network devices using User Mode Linux (UML) [15]. UML allows
multiple virtual Linux systems to be run on the same host Linux system, with each vir-
tual systems retaining standard Linux features. In particular, networking is configured

AutoNetkit 3

using standard tools. Additional software packages can be installed for extra features,
such as BIND for DNS services, or the Quagga routing suite. Quagga provides an im-
plementation of common routing protocols, allowing a Linuxsystem to function as an
IP router.

Netkit provides a set of tools to manage the process of setting up and launching a
UML virtual system. Once an emulated network has been specified in a configuration
file, Netkit takes care of creating and launching the UML virtual systems. Typically,
Netkit creates one virtual host for each router and launchesrouting services on each of
these routers. Each router has one or more virtual network interfaces that are connected
using virtual switches. These switches and the routing services running on the routers
allow emulations of large networks.

Netkit simplifies the process of launching the emulated network, including services
and virtual switches. However it does not provide tools to automate the configuration
of each network device. Netkit emulations can be extended beyond one physical host
machine, which we will describe in this paper.

Examples of Netkit networks Figure 1 shows an example, drawn from the test ex-
ample given in [1], of a Netkit network which emulates a smallInternet. To emulate
this network Netkit requires a description of each network device and the links between
them. Routing requires a set of configuration files for each network device. These de-
scribe interface configuration, such as IP addressing, and interior routing protocols,
such as IS-IS or OSPF. Border routers also require the BGP exterior routing protocols
to be configured. The network in Figure 1 with only 14 routing devices requires more
than 500 lines of configuration code, most of which is described in an arcane low-level
router configuration language.

One of the strengths of emulation is to build networks largerthan would be af-
fordable to construct in hardware. It is easy to conceive of networks with thousands of
devices and tens of thousands of lines of configuration code [17], but, at present, emu-
lating these networks is constrained by the configuration process. What is more, many
research projects require evaluations on multiple networks to test robustness and flexi-
bility. The complexity of device configuration means that creating a large-scale network
is a time consuming and error-prone process. This is true forboth physical networks and
emulated networks. Our tool simplifies this configuration process: our large-scale ex-
ample network consists of 527 routers connected by 1634 links, a size which would be
infeasible to manually generate.

Other Emulation Tools VNUML [10] is a medium scale software emulator, similar to
Netkit, that uses a User-Mode Linux kernel. There are also other emulation tools such
as Einar [7]. As AutoNetkit has been designed to be a high-level auto-configuration
tool, independent of a specific emulation technique, it could be used in these emulation
environments with only minor modifications.

2.2 Router Configuration

Each equipment vendor has a specific configuration language used to configure their
routers. These languages differ between vendors; to configure the same feature on two

4 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

Fig. 1. Small Internet Netkit Lab [1]

different routers may involve very different syntax. This requires an operator to learn
a new configuration language for each vendor, limits code portability, and makes it
difficult to manage a network containing routers from different vendors.

An example of a Quagga BGP configuration file is below, showinglow level con-
figuration requirements. Quagga is an open source routing protocol suite [14], used by
Netkit. Quagga configuration syntax is similar to that used in Cisco routers, but very
different to Juniper router syntax. All network related numbers in these configurations,
such as IP addresses and AS numbers, must be consistent across all network devices.

router bgp 300
network 200.1.0.0/16

AutoNetkit 5

network 200.1.0.0/17
!
neighbor 11.0.0.10 remote-as 30
neighbor 11.0.0.10 description Router as30r1
neighbor 11.0.0.10 prefix-list mineOutOnly out
neighbor 11.0.0.10 prefix-list defaultIn in
!
ip prefix-list mineOutOnly permit 200.1.0.0/16
ip prefix-list mineOutOnly permit 200.1.0.0/17
ip prefix-list defaultIn permit 0.0.0.0/0

Common router configuration tasks include setting up each interface and configur-
ing the routing protocols used to exchange routing information. A correctly operating
network requires each router’s configuration to be syntactically and semantically cor-
rect with configurations consistent across the network. If these conditions are not met,
the network will not operate correctly. For example, the IP address at each end of a
point to point link must belong to the same subnet.

These configuration files are usually generated by hand — a slow process with the
time taken being roughly proportional to the number of devices in the network. Each
router must have its own configuration file, and manually generating each configuration
file is impractical for large networks. Template based configuration methods [2,8] are an
improvement, but still require network resources to be allocated. Efficiently allocating
network resources such as IP address blocks, BGP community attributes can quickly
become complex for large networks.

Our goal is to automate this configuration process. This is a complex problem for
a hardware device based network: hardware faults, device dependent configuration lan-
guages, physical device connections, and multiple users accessing the system all must
be considered. Auto-configuration of a software based network is a more constrained
problem. When using Netkit we are able to dictate the target platform, and ensure that
the underlying network connections meet the desired structure. Configuration of emu-
lated networks still present a number of configuration problems such as routing and se-
curity policy implementation, automatic IP address allocation, which will be discussed
in this paper. Existing configuration tools for Netkit such as Netkit Interface Utility
for Boring Basic Operations (NIUBBO) [19], do not provide these features and only
allow small networks with very basic routing options. Even though languages such
as RPSL [22] and its associated tool RtConfig [23] can be used for complex BGP
policy specification and configuration generation, they still work at the device level.
AutoNetkit aims at a higher level, being able to configure networks from high-level
concepts.

3 AutoNetkit

AutoNetkit automates the process of creating a large and complex network. The aim
of AutoNetkit is to allow a user to say what they want to achieve with a network,

6 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

such as the business relationship to be expressed or the logical structure of the network
without requiring details of specific device configuration.Instead of assigning specific
values to configuration parameters of the devices, we want tobe able to express high-
level concepts for the network such as: “There must be at least one DNS server in
the network”; “Business relationship with neighboring ASsshould be enforced”; and
“OSPF link weights should be assigned using algorithm ABC”.

Resource Allocation

Compiler

Network
Specification

Policy
Specifications

Fragments

Netkit
Configuration

Files

Composition Plug-ins

Fig. 2. AutoNetkit System Overview.

We adopt an approach inspired by [3]. The system is illustrated in Figure 2. The user
specifies a network model which describes the logical structure of the network and the
resources in the network such as devices, IP address blocks.In addition, the user needs
to specify the rules/policies for the network such as routing policies. The rules/policies
pull in fragments (small templates of configuration code) toimplement the network.
These components are described below. The system design allows the use of plugins
to interact with the network model. This may involve readingand modifying network
object attributes.

The AutoNetkit language is implemented as an object oriented language using
Python [21]. Object orientated languages are well suited toconfiguration specification
as they allow natural expression of network devices as objects [6,12]. To aid in describ-
ing the components of our approach we will use the simple, butnon-trivial network
as in Figure 1. The AS level topology and BGP policies appliedto these networks are
shown in Figure 3.

3.1 The Network Specification

The network model is specified by the network designer using the AutoNetkit language.
This model describes the resources, devices, and logical structure of the network. The
details of these objects are described below.

Resources in the network: Each network resource is represented by an object in the
AutoNetkit language, with attributes managed or modified bythe network policies. The
two main resources are IP address blocks and devices. Examples of these are provided
below:

AutoNetkit 7

Fig. 3. AS level topology showing high-level specification of desired inter-AS policies for the
network in Figure 1. Two types of business relationships areshown. Customer-provider relation-
ships are shown as the dashed line between two vertically adjacent nodes — the AS on the lower
layer is the customer and the AS on the upper layer is the provider. The peering relationship is
shown as the horizontal solid line between AS20 and AS30. Thefigure also shows two other BGP
policies: load balancing over multiple links, and a back-uplink.

– IP address blocks;

Networks with IP address resource
AS1=Network(1, [’1.0.0.0/8’, ’100.0.0.0/8’])
AS20=Network(20, [’20.0.0.0/8’])
AS100=Network(100, [’100.0.0.0/8’])
AS200=Network(200, [’200.1.0.0/16’])

– Devices (routers, switches, etc.).

AS1.add_router(’AS1R1’,’Quagga’,’Router 1’)

In the above example, each AS is given a set of one or more address blocks. These
are used to assign IP addresses to the interfaces in that AS. Each router is represented
by an object inside the AS object. In this example, a router object, AS1R1, is added
to an autonomous system, AS1, with the specified initial values assigned to the router
object attributes. During the configuration process, objects inside the AS are modified
to satisfy user specified connectivity and policy requirements. For example, interface
objects will be added to the AS1R1 router object for connectivity configuration and

8 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

BGP objects will be added to this router object to implement business relationships
with other ASs.

Network Logical Structure: The user is also required to specify the logical structure
of the network, describing how the devices will be interconnected. This specification
may include details such as link capacity, and link weight. Link weights can be as-
signed to links or interfaces, and are used to control the path decisions made by routing
protocols.

A link between routers in the same AS can be easily setup usingtheadd link com-
mand in default mode, which takes 2 routers as parameters andcreates a link between
them. It will automatically add an interface to each router and assign an appropriate IP
address to each interface.

add intra AS links
AS100.add_link(AS100R1, AS100R2)
AS100.add_link(AS100R1, AS100R3)

When creating a link that spans two autonomous systems, we use theadd link com-
mand with specific options. If the remote autonomous system is managed by another
entity (such as another ISP), its configuration is outside ofour control. In this case,
we cannot automatically assign the remote router an IP address, so we provide the op-
tion for a user to choose to manually specify link IP address details. This configuration
flexibility is shown in the following example:

add inter AS links
AS30.add_link(AS30R1,AS300,AS300R1, constraints =
{"subnet": ’11.0.0.8/30’, "int1ip": ’11.0.0.10’,

"int2ip": ’11.0.0.9’})

We have described what is specified in the network model, but it is also important to
consider what is not specified. Everything in the network model is specified by the user.
For instance, the user indicates which routers are interconnected (although this may be
the output of a network generation program such as BRITE [16]). Hence, it is important
to avoid specifying pieces of no interest to users, even though they may be required in
the actual network configuration.

It is common to implement a point-to-point link between two routers as a /30 subnet,
which provides a usable IP address for each end of the link. Each interface in a link
must be within the same subnet, but the choice of the subnet itself is often unimportant,
provided that the allocation is not used again elsewhere in the network. It is a simple task
for an auto-configuration tool to choose such addresses fromallocated blocks, saving
the user from needless work in making specific allocations that they are not concerned
with. Automating allocation tasks also reduces the chance of bugs due to human error.

Similarly, creating a link requires the interfaces on each end of the link to be con-
figured, but the specific settings are often unimportant, providing they are consistent at
both ends of the link. An example is routing policies, which are applied to an interface.
Automating allocation tasks is analogous to using a software compiler to handle low
level resource allocation, freeing the programmer to writehigh-level code describing
only the functions they are concerned with.

AutoNetkit 9

3.2 Resource Allocation

As discussed, the compiler must realise the high-level network model, converting it
into a detailed model based on the implementation details. IP addresses are allocated
by taking the pool of IP addresses specified when the AS objectwas created, dividing
them into the relevant size subnet, and then allocating an IPfrom this subnet to the
relevant interface. This automated process avoids conflicting IP addresses and ensures
each interface has an IP address belonging to the same subnet.

There are some issues that need to be considered carefully inthis step. For instance,
although not needed, it can make it easier for a user if this process is deterministic.
Determinism is the property where instantiating the same network twice will result in
the same resource allocations being made. However, changing a subset of the inputs
should not necessarily lead to a widespread change in the final allocation and we may
wish to limit the effect of change on the allocations in an instantiated network. We refer
to the property of an allocation scheme to limit unnecessarychange asinsensitivity. To
implement this property we use asticky allocationmechanism.

Sticky allocation allows the allocation to a subset of nodesin the network to remain
constant in the face of change, unless the change will force achange in allocation,
either through address space exhaustion or the addition of links or hardware that directly
connect to that subset. The major advantage of sticky allocation is that it limits the
number of configuration changes that are required on the target devices, and this allows
more efficient incremental improvements to be carried out inthe network. Neither of
these features are required but they are desirable, as they improve efficiency and make
debugging easier. Our current tool makes deterministic andsticky allocations.

We show part of the resource allocation for router AS20R1 in AS20 of the example
in Figure 1

eth0 20.255.255.253/30
eth1 11.0.0.6/30
lo 127.0.0.1
lo:1 1.1.1.1/30

The interfaces have been automatically configured, with their IP addresses either
assigned from the pool of available addresses given for thatAS, or from the user’s
manually specified settings in the case of an inter AS link. The loop back interfacelo:1
is also configured on the router for use by the BGP routing protocol.

3.3 Rule/Policy Specifications

Rules are used to describe high-level requirements placed on a network, and range
from routing policies to security and resiliency requirements. To define high-level re-
quirements, the user needs to specify which rules are going to apply to which objects
inside the network as part of the input. Each rule is broken down further to a set of
smaller objects called fragments. A fragment is the smallest element that can be easily
translated into device specific configuration code. Fragments are described in more de-
tail in the next section. A rule/policy is a precise statement of which fragments will be
applied to which device objects and the exact values of the attributes that the fragment

10 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

is going to give to the object. Rules are implemented in AutoNetkit as objects. Typical
rules are routing policies. For example, to specify the interior gateway protocol (IGP)
to be OSPF with configurable area information

Add IGP logic
scope={’type’:’router’,’select’:’all’}
parameters=[’Area’,’new’,1] # OSPF parameters
AS100.add_rule(’OSPF’,scope,para)

and to enforce business relationship with neighbour ASs, AS100 adds thepeering()
policy to all of its sessions.

BGP policy for enforcing peering relationship
scope={’type’:’session’,’select’:’all’}
parameters={}
Rule = peering(scope,parameters)
AS100.add_BGP_policy(’Enforce business relationship’, Rule)

AutoNetkit has a library of rules (i.e., network services/ policies) implemented.
These include rules to set up DNS server, a large set of different BGP policies to main-
tain business relationship, contract obligations, security and back-up requirements. The
user needs to specifies in the rule specification which of these rules are going to be used
in each network. Each rule requires a “scope” and a “parameters” input. The “scope”
defines the BGP sessions that the policy applies to, and the “parameters” field is used
to provide special parameters to the policies.

3.4 Fragments

Many router configurations have a high degree of similarity,which allows for the script
based configuration methods discussed previously. It also simplifies the configuration
process, allowing most device specific configuration to be performed with simple tem-
plates. These templates are filled in with the relevant values from a resource database,
created based on the network model.

Some components of a router configuration are only needed on certain routers, e.g.,
we only require eBGP on edge routers. Simple templates are less useful in these cases.
Instead we use the concept of fragments [3]: small pieces of configuration code, each
typically controlling a single configuration aspect. Each fragment is defined by the ob-
ject attributes that it will creates or modifies.

Complex tasks require several fragments. AutoNetkit also provides an extensive li-
brary of fragments that can be used to construct the policies. These fragments can be
used to implement almost all realistic BGP policies including black hole, Martian fil-
ters, and peering. For example, a peering policy can be realised by using one fragment
to mark all routes on ingress with a community that encodes the peering type of the
BGP session. On egress the routes are filtered based on the community tags and the
peering type of the session, using another fragment. The peering type, a parameter of
the session, determines which fragment (BGP statement) to use. Additional fragments

AutoNetkit 11

can be used if complex traffic policies are implemented usingthe peering type. As dis-
cussed, we have used these fragments to implement a library of BGP policies, including
load balancing and a back-up link, as per the example of Figure 1.

3.5 Plugins

AutoNetkit has been designed to be extensible, allowing theuser to interact with the
network structure using plugins. We have implemented a plugin which exports the net-
work as a graph, where routers are represented by nodes and links by edges. Operations
can be carried out on this graph, and the results applied backto the AutoNetkit network
objects. The NetworkX [18] Python package is used to represent and analyse net-
works. This package includes common graph analysis functions such as shortest path
or resiliency algorithms, which can be used to study the network model in AutoNetkit.

The graph structure allows existing research to be implemented in a Netkit network.
As an example we have implemented a standard traffic engineering algorithm. The al-
gorithm optimises link utilization (minimises congestion), by adapting the link weights
used by the network’s routing protocol to choose shortest paths [9]. The result is that
traffic is balanced across network paths (it may be surprising that this simple form of
traffic engineering is effective, but previous results [9] have shown it can be almost as
good as MPLS). Our implementation uses the network model described above via the
plugin architecture, as well as a user provided traffic matrix. This algorithm is used
to analyse and optimise a network created using AutoNetkit,and apply the optimised
weights to the network, where they are used to generate the appropriate configuration
file entries.

We have also used simple mathematical functions to deliver powerful network re-
sults. The NetworkX function to find the central node in a graph is used for optimal
server placement: the DNS server in each network can be automatically set to be the
central node in the network. AutoNetkit’s plugin frameworkallows users to easily apply
mathematical research to networking, and then analyse the results in an emulated en-
vironment. AutoNetkit includes tools to verify the correctapplication of these weights,
which we will describe later.

3.6 Compiler

The compiler produces configuration files for the Netkit devices, based on the network
description, the rule/policy specification, and the library of available rules and frag-
ments.

The compilation process starts by creating an object for each device declared in
the network specification. It then examines the rules, creating an object for each rule,
and attaching relevant device objects. The template implementation of each rule is then
read, and the fragment objects for that rule created. These fragment objects are then
attached to the appropriate device objects, as specified by the rule.

After the fragment objects have been attached to the device objects, the individual
device configurations take place. The compiler first configures interface objects, ass-
ginging the IP address and network mask to each interface object, as per the resource

12 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

allocation process described earlier. The router objects are then configured, with the in-
ternal routing protocols configured first using the IGP fragment objects, and BGP using
BGP fragments, if required.

Fragments within each device and across different devices may have a dependency
relationship: some fragments need to be applied before the others, and multiple frag-
ments can modify the same attribute in the device objects. This is especially the case for
BGP fragments. One of the most important tasks of the compiler is to resolve these de-
pendencies. AutoNetkit provides two simple methods to solve these dependency prob-
lems. First, all fragments are given a unique sequence number, used to capture the order
dependency between fragments. A fragment with small sequence number is always ap-
plied before a segment with larger sequence number. Second,after sequencing if two
fragments still attempt to modify the same attribute, AutoNetkit issues a warning and
does not configure the device where conflict occurs. In this case the user must manually
resolve the conflict. While these two simple methods are successful in resolving all test
networks, more advanced methods are needed to resolve complex dependencies. These
are the topics of our future research.

Once the conflicts are resolved, the device objects are configured and written in
Quagga syntax to the configuration files, ready for deployment.

3.7 Deployment and Verification

AutoNetkit simplifies the process of automatically deploying the generated configura-
tion files to a Linux machine running Netkit. The deployment module copies across the
configuration files, stops any previous Netkit labs, starts the new lab, and verifies that
all hosts have been successfully started.

The deployment module can verify that the output of the optimisation plugin, de-
tailed previously, was successfully applied to the runningnetwork. It compares the out-
put of the NetworkX shortest paths algorithm for each source-destination pair in the
network, against thetraceroutecommand output for the Netkit network each pair in the
network.

3.8 Emulation Scalability

The use of software to emulate a network simplifies some aspects of hardware networks,
but also introduces new considerations. The most importantis the resources the virtual
systems requires from the host system, including memory andprocessor usage, which
increase with emulated network size.

A typical Netkit virtual system requires a minimum of 6MB RAMfrom the physical
host for the basic services required to run Linux, such as thekernel. This increases to ap-
proximately 16 MB of RAM if the virtual system is to act as a router. More memory are
required to provide network monitoring tools, such astraceroute, ping, andtcpdump.
Packet inspection can be performed usingtcpdump, but is more suitable for debugging
than large-scale traffic analysis: due to resource constraints, emulated networks are bet-
ter suited to testing protocols than large traffic flows.

Resource constraints limit the number of virtual systems that can be run on a sin-
gle Linux machine. To emulate large networks we run emulations on multiple Linux

AutoNetkit 13

machines, which are connected using vdeswitch [5]. The size of the emulated network
is then limited only by number of physical Linux hosts available, rather than the re-
sources of a single machine. This allows large-scale simulations to be deployed using a
number of inexpensive Linux machines. We have successfullyused vdeswitch to scale
Netkit emulated networks to several hundred virtual routers, across multiple physical
machines.

0 50 100
0

500

1000

1500

2000

2500

Number of Virtual Machines

M
em

or
y

(M
B

)

0 50 100
0

100

200

300

400

500

600

700

Number of Virtual Machines

A
dd

iti
on

al
 M

em
or

y
C

on
su

m
pt

io
n

(M
B

)
Fig. 4. Basic memory consumption with BGP and OSPF (left) and the additional memory con-
sumption withping andtcpdumprunning inside the virtual machines (right).

Memory consumption on these virtual routers grows linearlywith the size of the
network, for both case of with and without running applications. This is shown in Fig-
ure 4. Note that the memory consumption also depends on the size of the data inside
the applications. For example, large BGP tables can easily consume more than 16MB.

3.9 Visualization

AutoNetkit allows the user to plot their networks, providing visual confirmation of de-
signs and aiding in troubleshooting. The NetworkX graph representations discussed
previously are used with pydot [20], a library to plot NetworkX graphs using Graphviz [11]
graph visualisation software. We have made formatting customisations to better suit the
display of computer networks, which can be be seen in Figure 5. This figure shows a
section of the visualisation generated from AutoNetkit, based on the lab described in
Figure 1. Different link types can be seen; internal links are shown as solid lines and
external links are shown as dashed lines. Interface and subnet details are also visible.
Future work will add additional visualisation features.

4 AutoNetkit Performance: A Case Study

We have evaluated AutoNetkit performance in two areas: scalability, by generating a
large-scale test network, and ease of use, by comparing AutoNetkit to manually config-
uring the demonstration network shown in Figure 1.

14 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

Fig. 5. Visualisation output showing the topology for AS20 in Figure 1. IGP links are shown as
solid lines and eBGP links are shown as dashed lines. Resources such as interface numbers and
IP addresses have been automatically allocated by AutoNetkit.

A large-scale network can be quickly and easily. For instance, to configure a ran-
domly generated network of 100 ASs, with 527 routers connected by 1634 links, over
100,000 lines of device configuration code are needed. AutoNetkit only requires 50
lines of high-level code, consisting of loops to generate each AS, add routers to the AS,
and then interconnect these routers. Generating this network, including configuration of
OSPF, BGP, and DNS, is fast: AutoNetkit takes only 15 secondson standard desktop
computer, with a 3 GHz Intel Core2 Duo CPU processor.

We also configured the Netkit demonstration network, shown in Figure 1. This net-
work may appear simple compared to large-scale networks, but still requires extensive
configuration, including OSPF, BGP, DNS, and appropriate resource allocations. This
adds a significant overhead to testing a simple network. Using AutoNetkit, the network
model and policies for the this network can be described in 100 lines of AutoNetkit
code, compared to 500 lines of device-specific configurationcode. The AutoNetkit code
is high-level and descriptive, and allows the user to deal with their network, not device
configuration. It is also easy to alter the network: adding a link or router is simple in Au-
toNetkit, a task which is tedious and error-prone when manually creating configuration
files.

5 Discussion

AutoNetkit achieves the goal of automating network configuration for Netkit, and pro-
vides a number of benefits:

AutoNetkit 15

– Scale at lower cost:the cost (in time) for configuring a large network is reduced,and
is sublinear (rather than the linear costs of generating thewhole network effectively
by hand).

– Reliability: the reliability of emulations is improved, in the sense thatwe can be
more confident that the emulated network is exactly what we intended, i.e., there are
no misconfigurations that might stall routing, and hence change the performance of
the network.

– Consistency:consistency is part of reliability (consistency across routers is needed),
but it also involves consistency between the network, and the operators view of the
network, which is critical for ongoing design, debugging, and transparency.

– Flexibility: our approach maintains the flexibility of Netkit to emulate complex net-
works and protocols.

– Scripting:AutoNetkit is written in Python, and so can be easily scripted into larger
sets of experiments, for instance creating multiple instances of networks to compare
performance of different configuration.

Another way to view the activity is by analogy to programming. In the grim old
days, when programs were written in machine code, only a few gurus could program,
and they were highly specialized to particular machines. Programs were typically very
limited in size, and complexity. The advent of high-level programming languages made
programming a commodity skill, and separated the meaning ofprograms from the par-
ticular hardware. Larger and more complex programs have resulted. More recently,
software-engineering and related programming tools including integrated programming
environments, standard portable APIs, and specification languages have helped enable
very large software projects, with what could be described as a production line for code.

One view of AutoNetkit is as a high-level language and compiler for Netkit. Similar
to the benefit that high-level languages bring to programming, AutoNetkit can make the
network configuration process much easier, and enable emulations of large and complex
networks.

6 Conclusions and Future Work

We have developed AutoNetkit, a tool that allows a user to easily generate large-scale
emulated networks. AutoNetkit has been successfully used to generate a number of
test networks, including one of the principal Netkit test labs described in Figure 1.
AutoNetkit will be made available athttp://bandicoot.maths.adelaide.
edu.au/AutoNetkit/.

There are many additional features we intend to implement inthe future. We plan
to extend AutoNetkit to other emulators and to real networks, including deployment to
hardware networks consisting of Cisco and Juniper devices.We will also implement
additional features in AutoNetkit for other routing protocols, such as RIP and IS-IS,
support for MPLS, and filtering using Access Control Lists. It is important for an auto-
configuration tool to test generated configurations. We currently perform path checking
usingtraceroute, and will expand this verification in future AutoNetkit development.

16 Nguyen, Roughan, Knight, Falkner, Maennel and Bush

References

1. G. Di Battista, M. Patrignani, M. Pizzonia, F. Ricci, and M. Rimondini. netkit-lab - bgp:
small-internet.http://www.netkit.org/, May 2007.

2. Steven M. Bellovin and Randy Bush. Configuration management and security.IEEE Journal
on Selected Areas in Communications, 27(3):268–274, 2009.

3. Hagen Bohm, Anja Feldmann, Olaf Maennel, Christian Reiser, and Rudiger Volk. Design
and realization of an AS-wide inter-domain routing policy.Deustch Telekom Technical Re-
port, 2008.

4. J. Chen, D. Gupta, K.V. Vishwanath, A.C. Snoeren, and A. Vahdat. Routing in an Internet-
scale network emulator. InSymposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS). Citeseer, 2004.

5. Renzo Davoli. Vde: Virtual distributed ethernet.Technical Report UBLCS-2004-12, Univer-
sity of Bologna, June 2007.

6. Thomas Delaet and Wouter Joosen. Podim: a language for high-level configuration manage-
ment. InProceedings of the 21st conference on Large Installation System Administration
Conference, pages 261–273, Berkeley, CA, 2007.

7. EINAR. Einar router simulator.http://www.isk.kth.se/proj/einar.
8. William Enck, Patrick McDaniel, Subhabrata Sen, Panagiotis Sebos, Sylke Spoerel, Albert

Greenberg, Sanjay Rao, and William Aiello. Configuration management at massive scale:
system design and experience. InProceedings of the 2007 USENIX Annual Technical Con-
ference, pages 1–14, Santa Clara, CA, June 2007.

9. B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. InIEEE
INFOCOM, volume 2, pages 519–528. Citeseer, 2000.

10. Fermin Galan, David Fernadez, avier Rui, Omar Walid, andTomas de Miguel. Use of vir-
tualization tools in computer network laboratories.Proc. International Conference on Infor-
mation technology Based Higher Education and Training, 2004.

11. Graphviz. Graph visualization software.http://www.graphviz.org/.
12. Timothy G. Griffin and Randy Bush. Toward networks as formal objects. Position paper,

private communication, 2003.
13. M. Huang. VNET: PlanetLab virtualized network access.PlanetLab Design Note, PDN-05-

029, available at https://www. planet-lab. org/doc/pdn, 2005.
14. Kunihiro Ishiguro. Quagga routing software.http://www.quagga.net.
15. User Mode Linux. Uml.http://user-mode-linux.sourceforge.net/.
16. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite: An approach to

universal topology generation. InProceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems- MASCOTS, Cincin-
nati, Ohio, August 2001.

17. W. Muhlbauer, A. Feldmann, O. Maennel, M. Roughan, and S.Uhlig. Building an AS-
topology model that captures route diversity. InProceedings of the ACM SIGCOMM 2006,
Pisa, Italy, 2006.

18. NetworkX. High productivity software for complex networks. http://networkx.lanl.gov.
19. NIUBBO. Netkit interface utility for boring basic operations.

http://wiki.netkit.org/download/niubbo/niubbo-2.1.2.tar.gz.
20. pydot. a python interface to graphviz’s dot language.http://code.google.com/p/pydot/.
21. Python. Python programming language – official website.http://www.python.org.
22. RPSL. Routing policy specification language.RFC-2622,.
23. RtConfig. Rtconfig.http://irrtoolset.isc.org/wiki/RtConfig.

