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ABSTRACT
Network topology synthesis seeks methods to generate large
numbers of example network topologies primarily for use in
simulation. It is a topic that has received much attention over
the years, underlying which is a conflict between random-
ness and design. Random graphs are appealing because they
are simple and avoid the messy details that plague real net-
works. However real networks are messy, because network
operators design their networks in a context comprised of
complex technological constraints, costs, and goals. When
random models have been used they often produce patently
unrealistic networks that only match a few artificial connec-
tivity statistics of real networks: the features that make the
network useful and interesting are ignored. At best a net-
work divorced from context is a purely mathematical object
with no meaning or utility. At worst it can be completely
misleading. However, design alone cannot generate an en-
semble of networks with the variability needed in simula-
tion. We need to balance design and randomness in a way
that generates reasonable networks with given characteris-
tics and predictable variability. This paper presents such a
method, COLD, incorporating randomness and design prin-
ciples to create ensembles of synthetic networks.

1. INTRODUCTION

Everything should be made as simple as it
can be — but not simpler.

– Attributed to A. Einstein

The core problem of network synthesis is: to take one
or more network topologies, and produce a larger set
of topologies that is similar in some fundamental way.
Historically a major difficulty has been that “similar” is
very difficult to define. Here we use the notion advanced
by Li et al. [1] that the criteria for measuring similar-
ity must originate with network operators. Their goals,
constraints and decisions result in a network, and any
method that ignores this in favor of overly simplified ab-
stract synthesis risks generating unreasonable networks.

The strength of the Combined Optimized Layered
Design (COLD) method presented in this paper is that

it incorporates common themes from network manage-
ment, but is still as simple as possible while remaining
flexible and tunable.

There are several challenges to be met:

1. Simulation requires us to generate a potentially large
number of network topologies that are “similar”, but
varied enough to perform statistical analysis of re-
sults, e.g., generating confidence intervals for per-
formance estimates [2–4].

2. A network’s form and structure is driven by tech-
nical constraints. For instance, it must be able to
carry a given volume of traffic. If this is ignored,
then the resulting network could be impossible to
construct, or be ridiculous [1].

3. No model is useful if its parameters cannot be es-
timated. Estimation is aided by a monotonic rela-
tionship between network statistics and parameters,
but also assumes that the domain of the parameters
encompasses all of the reasonable networks we wish
our synthetic networks to resemble.

4. Model parameters must be operationally meaning-
ful! Parameters with only abstract meaning (e.g.,
nth degree distribution) are much harder to scale
correctly than meaningful parameters, e.g., costs.

5. The model should generate a “network”, not just a
graph. Simulations need details such as link capac-
ity, distances, or routing. These should be generated
as part of the model, not as an afterthought.

6. The model should be“as simple as it can be – but not
simpler”. Simplicity has many virtues: it improves
our intuitive understanding, reduces the complexity
of parameter estimation, and prevents over fitting.
There is a tension between“realism”and“simplicity”
– determining the correct tradeoff between these is
perhaps the most difficult of these challenges.

The above problems are clearly apparent when com-
paring networks with dramatically different goals and
constraints, such as virtual networks (e.g., the Face-
book Social graph) and physical networks (e.g., data
networks). For instance, a virtual network need not be
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connected, whereas a disconnected data network is bro-
ken; a virtual network has no constraint on the number
of links to a node, whereas a router has a physically
limited number of ports [1]; and a virtual network has
little cost to adding a link, whereas physical links can
cost a substantial amount, often dependent on distance.
Here we concentrate only on IP-layer networks, where
the costs and constraints are relatively well known.

The key to meeting these challenges is choosing a pro-
cess that parallels a real network design process [5–7]
used by many network engineers. We use a two stage
process that starts by designing the network at the
Point-of-Presence (PoP) level, using heuristic optimiza-
tion. Then we use templated design to implement phys-
ical router-level structures within PoPs, mimicking the
highly structured and pattern-based methods recom-
mended in basic texts on network management [5–7].

The generation process is deterministic. For any given
context, the resulting network would be fixed. To gener-
ate the stochastic variety necessary for simulation, we
randomize the context in which the network is gener-
ated, most notably the location of PoPs and the traffic
matrix the network must carry.

The result is a conceptually simple intuitive method
for generating structured “designed” networks. The pa-
rameters are meaningful – they are costs, allowing them
to be tuned to control the type of network generated: for
instance, a newly formed network servicing a burgeon-
ing market in a developing country wishes primarily to
provide connectivity as quickly and as cheaply as pos-
sible. As the market matures there is an incentive to
increase the level of service by providing higher band-
width, lower latency, or more reliability. Our process
can take these differing economic incentives or planning
variety into account through tuning the input parame-
ters. We can generate a large number of different net-
works by randomizing the network context. The re-
sulting networks come with all the details needed for
simulation (e.g., link capacities), and satisfy a range of
simple standard network-engineering constraints. The
model is easily extensible where needed.

2. BACKGROUND
The history of network research is littered with dis-

carded network topology models. One of the earliest
models was the Erdös-Rényi graph [8], where links are
completely random. Waxman [9] added some spatial
structure to this model with the intuition that longer
links are more expensive so less likely to occur.

There is a much more extensive literature on ran-
dom graphs (e.g., [10–16]), they are appealing because
even though they are built from a multiplicity of sim-
ple interactions they display high-level properties i.e.,
emergent behavior. We wish to preserve their simplicity
and avoid using a large number of parameters as this

has many detrimental effects.
However, once real data-networks were observed, it

was noted that they had structure that was not well
represented in simple random graphs. The next genera-
tion of innovations produced structural topology gener-
ators [10], these are based on the idea that a topology
generator should reflect the obvious hierarchical struc-
tures visible in real networks. They also guaranteed
connectivity, which Waxman graphs did not. The Geor-
gia Tech Internetwork Topology Models (GT-ITM) in-
corporated all these features.

Structural topology generators were widely used un-
til they were unable to explain new large-scale measure-
ments of the Internet [15,17–19]. Measurements of node
degree distribution suggested that this distribution was
heavy-tailed, following a power-law distribution [19], ir-
reconcilable with the structural models of the time.

Attention then focused on finding random graph mod-
els that could explain this distribution [11–16, 18, 20].
These approaches were appealing in their simplicity and
the supposed universality that they predicted. Many of
the models mimicked the supposed evolution of a net-
work as it grows, though often the argument was re-
versed, i.e., because a model generated a network with
a power-law degree, it was inferred that the network
evolved according to the model.

Criticisms soon appeared, ranging from comments
about the problems with the data and its interpreta-
tion [21], to the fact that there are many possible net-
works with a power-law distribution, and only some
of these satisfy other basic requirements for networks
(e.g., port constraints on routers) [22–25]. Various fixes
have been suggested, such as the degree-sequence gen-
erators [26,27], which add to the set of statistics use to
generate a network in order to better match real net-
works, but these approaches introduce yet more ques-
tions about what similarity should mean.

Graphs are high dimensional objects, and compar-
isons of “similarity” based on a limited set of abstract
features can fail simple sanity tests [1]. For instance,
Waxman graphs are not guaranteed to be connected. If
enough statistics are included to ensure that such tests
are passed, we risk over-fitting the model, potentially
resulting in a series of isomorphic graphs1, of no statis-
tical value in simulation.

While comparisons of statistics are inevitable, this is
not the only criteria we need to consider. Designed net-
works have been shown to mimic observed statistics of
real graphs, such as power-laws [1, 28,29], but they use
meaningful criteria in their design process, avoiding the
production of patently unrealistic networks by generat-
ing network topologies that mirror real-life constraints
and engineering goals.

1There is no known polynomial time algorithm for testing if
two graphs are isomorphic.
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Another underlying theme begins to emerge in the
apparent conflict between random graphs and designed
graphs. There is a clear contrast between the two com-
peting approaches to modeling data networks. However,
we do not need to choose: instead, we can steer a course
between the two. Randomness is needed. We need to
be able to generate a large number of statistically vari-
able networks. However, we also need to incorporate
structure and intelligent design.

COLD does so by creating a random context for a
network, then uses a (nearly) deterministic generation
process that is motivated by the real goals, constraints
and decisions that network engineers make in building
a real network.

We go to considerable efforts to build a, still simple,
but much more realistic design process. Our goal is to
generate networks that closely resemble those running
today, in a tunable way so as to be able to replicate
the wide variety of networks that are observed in the
wild [30]. Although our approach is similar to [1] in
spirit, its implementation is very different: the opti-
mization problem we solve is more complex, and we use
techniques from graph theory to generate a multi-level
hierarchy in a way that mimics the design patterns seen
in real networks.

3. TOP-LEVEL SYNTHESIS
We focus on synthesizing single data networks, such

as a single network run by an Internet Service Provider.
This is the level where design has the most influence, be-
cause the network is under the control of a small group
of designers, all following a common process.

We use optimization to create our networks, but it
is important to realize that few network designers are
mathematicians or trained to use formal optimization
tools. Moreover, the actual design problem for a large
network is very complex, involving large numbers of
technical constraints (e.g., port limits) which depend
on varying details (e.g., router models). Networks are
rarely designed from scratch – they evolve. Operators
and managers try to optimize (by reducing costs, or
improving performance) but usually do so heuristically.

More importantly, most of the optimization steps con-
cern the PoP-level network. The internal design of PoPs
(Points of Presence) is almost completely determined by
simple templates [5–7], since the cost of internal links
is much lower than inter-PoP links.

COLD mirrors this process by first generating an op-
timized PoP-level network, and then using templates
to create a router-level map. In this section we ex-
plain the PoP-level optimization process, and defer the
router-level network generation until §8. The guiding
principles of the optimization are:

1. We must mirror the real-life process of designing a
network.

2. The process needs to be tunable. Real networks
come in a wide variety [30], determined by differ-
ent underlying cost/benefit structures. We aim to
be able to tune the input parameters of our process
to replicate this wide range, either by choosing pa-
rameters to match a given set of networks, or by
allowing these parameters to vary.

3. The optimization cost function and constraints must
be as simple as possible; most notably they should
have few parameters. The more detailed and compli-
cated a cost function is, the less general and adapt-
able it is. If it becomes too complicated, it is hard
to develop an understanding of the relationship be-
tween the input parameters and output networks,
and hard to estimate parameters when needed.

4. The optimization cost function should be meaning-
ful, and related to the criteria that are important to
network engineers. Fabrikant et al. [28] show that it
is possible to generate a wide variety of topologies by
tuning an optimization process, but their cost func-
tion did not have a strong analogue to real-life costs.
The meaning of the cost function also makes several
tasks easier, such as extrapolating a network to ex-
amine what it might look like as it grows [4,26] as it
is difficult to know how purely abstract parameters
should scale as a network grows.

There are several parts to an optimization scheme for
synthesizing networks:

1. The context of the optimization problem, by which
we mean the inputs to the problem: the PoP loca-
tions and the traffic matrix. The generation of these
is described in §3.1.

2. The optimization problem itself. This includes the
variables, the constraints and the optimization ob-
jective function. We minimize the cost of the net-
work with the constraint that it can carry all of the
expected traffic. We discuss this in detail in §3.2.

3. The algorithm for choosing an optimal network topol-
ogy, which we describe in §3.3.

3.1 Context
It is not strictly correct to divide the area of network

synthesis into random graphs and designed graphs as all
the interesting models synthesize a random ensemble
of graphs. The distinction lies in the way randomness
is introduced, random graphs are typically constructed
by repeated application of simple random rules, but de-
signed approaches can introduce randomness through
the inputs to the design process, i.e., the context. In
our problem the context consists of:
• the spatial locations of the nodes or PoPs; and
• the traffic matrix, giving traffic demands between

each pair of PoPs.
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We generate these randomly, so that each time we syn-
thesize a new network we generate different positions
and populations. Thus, even with fixed parameters we
can generate an ensemble of networks guaranteeing that
the generated networks are not the same, even if their
connectivity is!

We choose n PoP locations uniformly at random on
the unit square. This is the simplest approach for gen-
erating their position. The result is a 2D Poisson pro-
cess conditional on the number of PoPs. The behavior
of such a process is mathematically tractable and very
well understood. We use the physical distances between
the PoPs to determine two components of the objective
function used in the optimization.

We tested numerous alternatives including:
• Different region shapes - the shape of the underlying

area makes little significant difference on the result-
ing networks, unless it is extremely long and skinny.
• Different distributions of PoP locations, primarily to

make this distribution more bursty, but this also had
only a small effect on the results (see §7 for details).

As these are inputs to the optimization step, there is no
difficulty in using any model desired here and our tool
provides the facility to allow this.

Our traffic matrix is created using a gravity model,
proposed in multiple contexts [31–33], and tested [34]
as a model for synthesizing traffic matrices. It suffers
from identifiable flaws [33], but matches the distribu-
tion of real traffic matrices well [34] (our main require-
ment). The gravity model is populated by choosing a
random population for each PoP. We tested two types of
population model, the exponential model (populations
were independent, identically distributed exponentials
with mean 30), and the Pareto with shape parameters
10/9 and 1.5 (but the same mean), in order to test the
impact of varying degrees of heavy tail on the results.
Surprisingly, the effect on the inter-PoP topology of a
heavy-tail in the traffic was small (see §7 for details)
(although it might be larger in subsequent steps, e.g.,
mapping PoPs down to routers §8).

We prefer the simpler, exponential model in most of
the subsequent work, though once again it is trivial to
change this detail, and our tool provides this option.

3.2 Formulation of the optimization problem
Each candidate PoP-level topology is represented by

an undirected graph G(N,E) with the same set of nodes
N (the PoPs determined in the context step). However,
each topology has a different set of edges, E (the links
between PoPs). The variables in our optimization are
thus the locations of the links in the PoP-level topology.

Each edge in the network is assigned a capacity wi.
The main constraint in the problem is that the capaci-
ties of the network are sufficient to carry the inter-PoP
traffic which implicitly requires the network be con-

nected. We do not include redundancy, port numbers or
other complex constraints at this level. They are dealt
with in the router-level construction §8.

Our cost function represents the cost of building the
network and was chosen to be as simple as possible yet
still able to approximate real-life objectives and produce
a wide range of behavior. Its two components are link-
and node-based costs, each described below.

3.2.1 Link cost
The cost for a link depends on many factors including

the economic and geographical environment, existing
infrastructure and networks, and other technical lim-
itations. If these are modeled in too much detail we
risk the model becoming less applicable to future net-
works and current networks in different environments.
We keep the model as simple and general as possible,
while allowing it to be tuned to produce a wide variety
of networks.

To determine the cost for each link given E we start
by determining the required capacity for each link. We
perform shortest path routing using the physical dis-
tances between the nodes. We then set the required
capacity for each link, wi, by summing the total traffic
demand for all the routes over that link, and multiply-
ing by a constant factor.

The cost for link i ∈ E is given by Ci = k0 + k1`i +
k2`iwi, where `i is the length of link i and wi is the
bandwidth of link i and k0, k1 and k2 are constants.

The link cost consists of three components:
0. k0: The cost if the link exists.

1. k1`i: A cost for the physical length of a link; for
instance, the cost of digging a trench for cabling or
renting space in a conduit.

2. k2`iwi: A bandwidth cost. This should approxi-
mately represent the cost of capacity.

Note that there is another way to interpret the total
bandwidth cost, which is given by∑

i∈E

k2`iwi = k2

∑
r∈R

trLr, (1)

where R denotes the set of routes, Lr is the length of
each route r ∈ R, and tr is the traffic along route r.
Thus this part of the cost is proportional to the traffic
on each path (which is a fixed input to the problem)
and the length of each path. This is the only part of the
cost which is load sensitive, and hence which depends on
the routing of traffic. The implication is that our cost
function will be minimized by shortest-path routing.

3.2.2 Node Cost
In our model, the number of nodes is fixed, so typ-

ically in optimization this would result in a constant
node cost. However, we found that we needed a cost to
differentiate types of PoPs.
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Real networks show tremendous variability [30]. Some
are meshy, and others more like a hub-and-spoke net-
work. Optimization of link costs alone tends to produce
meshy networks – for instance, when the k2 cost is domi-
nant, it results in cliques. We cannot get hub-and-spoke
networks purely through optimizing against link costs.

Further examination of the networks in [30] also shows
that they often have two classes of PoPs: leaf and core.
Typically leaf PoPs all had only one link connecting
them to the network (i.e., they had node degree 1), and
core PoPs had two or more links. Obviously, hub-and-
spoke networks have more leaves than meshy networks.

The simplest and cleanest way of inducing leaf nodes
in our optimization-based networks was to add a cost
for non-leaf nodes. So each node j with degree(j) > 1
incurs a cost of k3. This represents a complexity cost ; a
PoP with multiple connections to the outside world is
more complicated to implement and maintain than one
with only one connection. Complexity has a cost in real
networks [35]. Managing a small PoP with only a single
router, and/or single link is much simpler than a multi-
router, multi-link PoP. We represent this in the simplest
way possible, through a cost k3 for each non-leaf PoP.

3.2.3 Optimization Problem
The optimization problem is therefore:

min
G(N,E)

∑
i∈E

(k0 + k1`i + k2`iwi) +
∑

j∈NC

k3, (2)

where G runs over all connected graphs on n nodes, and
NC = {j ∈ N | deg(j) > 1} is the set of core or hub
nodes.

The costs k0, k1, k2 and k3 allow the process to be
tuned to produce different types of topologies, by chang-
ing the relative importance of each part of the cost. To
understand how this trade-off works, we consider the
impact of each component of the cost separately.
• k0-cost : This cost depends on the number of links.

Networks must be connected, so if this cost domi-
nates, all the spanning trees are optimal solutions.
• k1-cost : This is a cost for the total length of all links.

If this cost dominates, then the optimum solution is
a minimum spanning tree.
• k2-cost : The k2 cost can be interpreted as a cost

for the length of the routes, see (1). Hence, when
k2 dominates the routes will be as short as possible,
i.e., the result will be a clique or fully connected
network.
• k3-cost : If this cost is dominant, the optimal net-

work will have only one node with degree greater
than one, i.e., it will be hub-and-spoke network.

Typically more than one cost will contribute, and so we
will get a network that is a mixture.

The components of the objective functions are simple
in themselves, and optimizing against any one is not

difficult. However, the mixed optimization is not so
simple. There are too many potential solutions for a
complete enumeration for even moderate values of n.
Moreover, the problem does not decompose into smaller
problems, and the relaxation from an integer problem
to the reals is not useful. Hence we solve it heuristically.

Guarantees that our solution is truly optimal are not
necessary. This paper is not about optimization, per se,
but rather about an attempt to replicate the process of
network engineering. Given the uncertainties in inputs
such as the traffic matrix and cost model, network engi-
neers are typically looking for a good solution, not the
optimal, and they do so using their own heuristics.

3.3 Genetic Algorithm
Once we have formulated the optimization problem,

we must decide on an algorithm for finding solutions.
Because exact algorithms are difficult to apply to (2),
we use a heuristic search algorithm, called a Genetic
Algorithm (GA). It works by evaluating the objective
function on an initial random population of candidate
topologies. It then chooses the topologies with lower
costs to be more likely to survive and pass on their
“genes”to the next generation (either by crossover (breed-
ing), mutating or surviving unchanged). The process is
repeated for many generations, with fitter topologies
more likely to survive the overall population improves
until all topologies are well-adapted to the environment
and the population reaches an almost-stable state.

While there are many candidate search algorithms,
we choose to use a GA because it has the following
properties:
1. Flexibility : GAs only requires small adaptations to

cope with changes to the objective function.
2. Competiveness: We do not need to find the true

optimal solution, but we do need to find a good so-
lution. One way to ensure this is to require that the
GA’s solution is at least as good as competitors. A
key advantage of GAs is that we can include alterna-
tive solutions in the initial population, and thereby
guarantee it is at least as good as these.

3. Non-exclusivity: For a given optimization problem,
one run of a GA generates a population of solutions.
The variation between these solutions can give a bet-
ter idea of which characteristics are important in op-
timizing these topologies, and which are irrelevant.
It also allows us to create multiple networks with the
same context, potentially providing additional sup-
port for simulation where one wants a fixed context,
but multiple topologies.

Of these, the first property has been most important
here as it has allowed us to test multiple possible ob-
jectives in our search for a simple but realistic set (the
results of which are given in §3.2.3). We provide the de-
tails of our Genetic Algorithm in the supplied Matlab
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code and the following section.

4. DETAILS OF THE GENETIC ALGORITHM
In this section we provide some of the details of the

Genetic Algorithm.
Inputs

• Matrix containing the coordinates and population
of each Point of Presence (PoP).

• The optimization parameters: k1, . . . , k4.

• The genetic algorithm parameters, including the
number of chromosomes in a generation and the
number of generations. More parameters appear
below, in italics.

Outputs

• Adjacency matrix of the best topology found by
the Genetic Algorithm.

• (Optionally) Adjacency matrices of the whole pop-
ulation in the final generation.

• Costs of the candidate topologies in the final gen-
eration.

State

• Each candidate topology in the current generation
is stored as an n by n adjacency matrix.

• The costs for each topology are also stored.

4.1 Algorithm

1. Determine the first generation of topologies

• One starting topology is the minimum span-
ning tree (using the physical distances deter-
mined by the PoP-positions in the input).

• One starting topology is the fully connected
topology (every PoP is linked directly to every
other PoP).

• Topologies can be provided directly as input,
typically from other optimization methods.

• The remaining topologies are generated ran-
domly using Erdos-Renyi graphs with a cho-
sen probability for each link. This probability
can be fixed over all these topologies, or be
different for each topology as desired.

2. Evaluate the cost of each of the topologies in the
current generation.

3. Create the next generation of topologies. These
consist of:

• The best num saved topologies topologies from
the previous generation.

• num crossover topologies topologies resulting
from crossover (breeding).

• num mutation topologies topologies resulting
from mutation.

4. Repeat from step until there have been num generations
generations.

5. Output the topology with the lowest cost.

For a Genetic Algorithm to be effective, it must be
possible to efficiently generate “better” topologies by
breeding and mutating“good”topologies. Consequently,
the key challenge in designing a Genetic Algorithm is
designing the crossover and mutation steps so that they
work quickly and have a reasonable likelihood of pro-
ducing good topologies.

4.1.1 Crossover
Crossover involves choosing several topologies (“par-

ents”) from the current generation to combine and cre-
ate a new topology of the next generation. COLD picks
b topologies uniformly at random, then chooses the best
a of them for crossover. Example values of a and b are
3 and 7 say.

Since the each topology is a graph with n nodes, there
are

(
n
2

)
possible links in the new chromosome. For each

of these possible links, we choose one of the parents at
random and copy whether the link exists or not from
that parent. When choosing the parents at random,
they are chosen with probability inversely proportional
to their cost. This crossover step occurs once for each
of the new chromosomes created by crossover.

4.1.2 Mutation
To create a mutated topology, one of the topologies

from the previous generation is selected at random, with
probabilities inversely proportional to cost. Then one
of two types of mutation occurs:

• Link mutation: A pair (m+,m−) is determined
using a random function mutate fn(). m+ links
that exist in the chromosome are removed, and
m− of the links that do not exist are added to the
chromosome. Here mutate fn is usually chosen so
that m+ and m− tend to be much less than n.

• Node mutation: A node which is not a leaf node
is made into a leaf node, with its only link now
running to the closest non-leaf node.

4.1.3 Connectedness
The mutation and crossover steps can produce a net-

work that is disconnected. If the network is left dis-
connected, COLD finds all the connected components
and the shortest link between each pair of connected
components. COLD then finds a minimum spanning
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tree (minimum in terms of physical link distance) to
connect these components.

5. PERFORMANCE OF THE GA
The first issue to resolve is the tuning of the internal

parameters of the GA to produce near-optimal topolo-
gies while managing its run-time. These internal pa-
rameters include the number of generations, the number
of topologies in each generation, and the mutation and
breeding parameters. To compare the effectiveness of
different parameters we could simply run the GA with
the fixed input and context, varying each internal pa-
rameter. The best internal parameters would be those
producing the lowest cost topologies at a reasonable
speed. However, we would still have no idea whether
these topologies are near the optimum.

The most obvious approach to testing if topologies
are optimal to use is brute-force. While brute-force is
totally infeasible for moderate numbers of nodes, we
can still use it on contexts with low numbers of PoPs
to find the optimum topology. We tested on a wide
variety of contexts of up to 8 PoPs and the tuned Ge-
netic Algorithm found the optimum in every case. The
number of generations and the number of PoPs in each
generation needs to grow as the number of PoPs in the
network grows, but this testing determined an absolute
minimum for these parameters.

Brute force testing is not sufficient to demonstrate
the performance of the GA for the full range of net-
work sizes. We implemented several algorithms to test
against the GA for higher numbers of PoPs. The num-
ber of possible graphs is super-exponential in the num-
ber of nodes, so these algorithms reduce the size of the
problem by focusing on hub nodes and their intercon-
nections. To further reduce the magnitude of the prob-
lem we used greedy algorithms.

Each test algorithm starts with one hub node, and
every over node a leaf connected to it. Hubs are then
added and connected to the closest leaf nodes (the way
in which the hubs connect to each other varies) in such a
way that the cost of the network reduces with each hub
added. If a hub can not be added without increasing
the cost of the network, the algorithm terminates. The
alternate methods for adding hubs are as follows:
• Random Greedy : A random permutation of all the

nodes is chosen. The algorithm then iterates over
the PoPs in this order. For each PoP it decides
whether changing it to a hub reduces the cost of
the network, and if so, the node is added as a hub.
New hubs are linked to the existing hubs in a greedy
manner: picking the best connecting link (the one
that gives the lowest cost network), then the next
best link, etc., until there are no more cost reduc-
tions. Once all the PoPs in the permutation have
been evaluated, the process repeats for many dif-

ferent random permutations of the PoPs. The best
network at the end is chosen.
• Complete: All the PoPs are tested as a possible hub

and the best one is taken. This repeats until none
of the remaining nodes will reduce the cost when
added as a hub. Each new hub is connected to all
the existing hubs, thus making a network where the
hubs form a completely connected graph or clique.
• MST : Just like complete, but the hubs are connected

in a minimum spanning tree.
• Greedy attachment : Like complete and MST, but

inter-hub connections are chosen greedily for each
new hub (as in Random Greedy).

After tuning the GA we compared it to each of the
greedy algorithms by generating a set of contexts and
running each algorithm on each context. We then com-
pared the costs of the best solutions found by each algo-
rithm. The cost of the optimal solution found by each
algorithm is plotted against k2. It is clear from Figure
1 that different algorithms perform better in different
circumstances (with different values of k2, k3). Note
that when the greedy algorithms perform better than
the GA, they can be run first and the results used as
starting topologies for the GA (this is labeled as ini-
tialised GA in Figure 1) ensuring it provides topologies
that are at least as good as any produced by the greedy
algorithms. The greedy algorithms are fast for moder-
ate numbers of nodes, thus running them before the GA
to improve the overall results is worthwhile.

Figure 2 shows the runtime of the GA, which grows as
O(n3GT ), where n is the number of PoPs, G is the num-
ber of generations and T is the number of new topolo-
gies in each generation. We chose to fix G and T at 100
in the tuning stage. The n3 term arises in evaluating
the all-pairs shortest paths step, though this could be
performed faster with a better implementation.

O(n3) might seem impractical as an order of scaling
for the run time of the GA, but it is practical to generate
networks of up to 800 PoPs with it (large for a PoP-
level network). However, this reinforces our decision to
optimize at the PoP-level as router-level optimization
could produce problems of totally infeasible size.

As further validation, the GA was tested for sensitiv-
ity to increasing the number of generations or the num-
ber of topologies in its population of solutions. Despite
quadrupling the number of topologies and the number
of generations, the GA showed at most 10% decrease in
costs for all values of (k0, k1, k2, k3) tested.

6. TUNABILITY
One of our goals is that the output of the optimization

process be tunable, as expressed in points 3 and 4 in the
introduction. Here we show the simple relationship be-
tween the input parameters k0, k1, k2, k3 and some reg-
ularly observed characteristics of the output networks.
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Figure 2: The run time of the genetic algorithm
grows cubically in the number of nodes, with
G = T = 100.

We can finely control such statistics as average node
degree, assortativity of node degrees, clustering coeffi-
cient, average shortest path lengths, average node and
link betweenness by changing these parameters. We can
also control them such that they are representative of
any range of networks found in [30].

COLD has four control parameters k0, k1, k2, k3 that
we can tune to produce different characteristics in the
output topologies. However, if we multiply all of the
parameters by a constant, the costs for every topology
will be multiplied by that constant, resulting in an ex-
actly equivalent optimization problem. Consequently,
we fix k0. When tuning these parameters we noticed
that increasing k0 and increasing k1 have very similar
effects: they both serve to reduce the number of links in
the topologies, and produce very similar effects in the
measured statistics. We kept the ratio between them
fixed so for the following results, k0 = 10 and k1 = 1.

We show some of the most pertinent statistics for the
synthesized topologies, and how they relate to k2 and
k3. Each of these plots is continuous and monotonic
with tight error bars, so for any given statistic it is
simple to read off some values of k2 and k3 that produce
the desired value of that statistic. This makes it easy
to tune the GA to synthesize networks with the desired
value for any of these statistics. Further, the values
obtainable for each statistic covers the full range of the
values realized in [30], see Figures 3,4 and 5. Here we

show only the graphs for n = 30, as they are similar for
other values of n, including n = 50 and n = 80.

The average node degree is an important and fre-
quently used statistic, representing how many links there
are in the network. The higher the node degree, the
more “meshy” the graph is. Since the k0, k1 (and to
a lesser extent k3) costs only increase when links are
added to the network, increasing them should reduce
the average node degree. Increasing k2 instead increases
the average node degree, as is shown in Figure 3. Note
that for very high values of k3 the networks are all of
the same form: one hub PoP connected to 29 leaf PoPs.
These networks are trees so they have the minimum
possible node degree for 30 nodes, 2 − 1

30 . While not
shown in Figure 3, by increasing k2 further we can in-
crease the average node degree to the maximum possible
node degree of 29. When the value of k2 strongly dom-
inates, it produces a fully connected graph, confirming
our theoretical assertions in §3.2.3.

The majority of PoP-level networks in [30] display av-
erage node degree ranging from the minimum available,
up to around 4.5 (Figure 3). The GA can produce aver-
age node degree values all the way from the maximum
of n− 1 to the minimum of 2− 1

n for any value of n.
The diameter of a graph is another frequently used

statistic [4]. It denotes the maximum number of hops
between pairs of nodes in the graph. Graphs with small
diameter relative to their size and node degree demon-
strate the “small-world” property. Graphs synthesized
by the GA can be controlled to display a wide variety
of diameters. The 30 node graphs in Figure 4 display
a wide range of diameters. To obtain very large diame-
ters, the number of links in the graph must be low (low
k2) but also the hub cost k3 must be very low. A high
hub cost forces a low number of hubs, causing the di-
ameter in the hub subgraph to be low, and hence the
diameter in the overall graph to also be low (since every
leaf is directly connected to a hub). 90% of the graphs
in [30] have diameters less than 15, and all but one have
diameters less than 35.

Clustering coefficients are a way of measuring local-
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ity, a principle commonly referred to in network design.
The global clustering coefficient (GCC) measures the
number of triangles present in the graph compared to
the maximum number of triangles possible. In [30] 90%
of the GCCs are below 0.25, and all of the higher GCCs
belong to networks with very few nodes. Varying the
value of k2 causes the GA to move from producing trees
(GCC of 0) to producing fully connected graphs (GCC
of 1), importantly the GCC is controlled finely and reli-
ably by k2 and k3, allowing the degree of locality present
in the synthetic graphs to be finely tuned across all pos-
sible values as shown in Figure 5.

7. LEAF-INDUCING COST
In this section we show that while it is possible to gen-

erate reasonable networks just using link costs
∑

i∈E(k0+
k1`i + k2`iwi), a node-based cost

∑
j∈NC

k3 is required
to encompass all the variety we see in networks [30].

When generating networks without a node-based cost,
we can still vary k2 to control the statistics mentioned
above to obtain any value realized by the networks in
[30], including diameter, average node degree, cluster-
ing, and others. However, there are some networks
in [30] that have very many PoPs of degree 1 (leaf PoPs),
and few higher degree PoPs (hubs). This “hubbiness”

is reflected in the coefficient of variation of node degree
(CVND). CVND is defined as the standard deviation
of the node degrees divided by the mean of the node
degrees. Some networks in [30] have a CVND of nearly
2, whereas with k3 = 0 none of the synthetic networks
have a CVND greater than 1.

Before introducing a node cost we tested if it was pos-
sible to generate hubbier networks (with higher CVNDs)
by changing the nature of the context provided to the
optimization. There are two parts of the context that
can be altered:
• The populations of nodes.
• The spatial distribution of the nodes.

Usually, the node populations were exponentially dis-
tributed with fixed mean. To get a greater variation
in node degree, we trialled a heavy tailed distribution,
one more likely to produce extreme values. In this case,
we used Pareto distributions (a form of power law dis-
tribution) with the same mean as above. The Pareto
distribution has two parameters: a shape parameter α
and a scale parameter xm. The lower α is, the more
heavy tailed the distribution. In this case, the Pareto
distributions used had (α, xm) = (1.5, 10) and (1.11, 3).
Both choices have the same mean and infinite variance.

It is also possible to change the spatial distribution
of the nodes. Normally the nodes were independently
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uniformly distributed over a rectangle. In order to get a
few nodes with very high degrees , and many nodes with
low degrees, we tried clustering the nodes together by
randomly choosing the locations of a few small circles,
and restricting nodes to lie within these circles. We also
tested the effects of changing their number and size.

Both the changes to the population distribution and
the spatial distribution successfully increased the CVND

and increased the number of leaves. However, even at
their most extreme they did not reduce the number of
hubs sufficiently to represent the full gamut of networks
– it was necessary to add a hub cost to allow for the sort
of variability we see in [30]. Once a hub cost is incor-
porated, it is possible to accurately control both the
CVND and the number of hubs (Figures 6 and 7).

8. FROM POPS TO ROUTERS
So far we have been concerned with synthesizing PoP-

level topologies. These are useful for some tasks, but
often we need router-level topologies. In this section we
describe how to build a synthetic router-level topology
using a PoP-level topology as input. The method de-
scribed can take input PoP-level topologies synthesized
by the process described above, some other method, or
even a measured PoP-level topology [36,37].

Optimizing a network at the router-level is sometimes
possible, but in practice it is rarely attempted as the
problem can be much larger than at the PoP-level (e.g.,
a moderately large network may have 40 PoPs, but 200
routers). Even when it is feasible there are additional
technical and engineering constraints at the router level
(e.g., the complex interaction between line card options
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and the number of router ports and the requirement
for redundancy in parts of the network), making it is
overly complex as a method for synthesizing router-level
networks. Instead, COLD is inspired by the processes
used by network designers.

Network operators leverage hierarchy [5–7] in network
designs for two main reasons:
• Scalability: in many cases a hierarchical network can

be made much larger than the simpler alternatives.
• Simplicity: hierarchy makes a network easier to vi-

sualize, and this is a key feature towards making it
easier to manage. It is analogous to modularity in
programming languages — ideally it allows consid-
eration of network components in isolation.

Most frequently a network’s hierarchy is based on the
natural structure of its PoPs, which roughly correspond
to a network ability to provide service to a metropoli-
tan area. A common design strategy is to heuristically
optimize the PoP-level network, and then introduce hi-
erarchy by using templated design for the PoPs. Using
a small number of templates (repeated patterns) has
many advantages: there are only a few designs for en-
gineers to learn, the amount of documentation needed
is reduced, spare inventory can be reduced (as fewer
models of device are needed), and devices can be pur-
chased in larger quantities, reducing cost. Ideally all
PoPs would use the same pattern, but in reality some
are many times the size (in terms of customers num-
bers or traffic) of others and one size does not fit all.
However, a small set of designs often suffices.

Figure 8: Each PoP shows the routers inside it
and the graph product templates used to con-
nect core routers of adjacent PoPs. PoPs with
higher traffic require more access routers, and
greater redundancy to nearby PoPs.

Previous work has used PoP structure in the infer-
ence of network topology [36, 37], and in network de-
sign [38]. Here we have more information because we
start from a context, which provides geographical and
traffic information. COLD applies an approach moti-
vated by the work of Parsonage et al. [38], who show

that many real world networks can be described as the
graph product of the PoP-level graph and a few PoP
design templates. The reason for this is clear, network
designers use templates to design PoPs [5–7] and fea-
tures such as link redundancy are naturally expressed
in terms of the product used. This correspondence be-
tween the mathematical concept of a graph product and
the choices made by network designers enables us to ex-
plicitly build a network using the same constraints as
real network designers. Thus meeting our requirement
that a network’s form and structure be driven by tech-
nical constraints.

Many methods of synthesis are possible using the
techniques in [38], allowing great variety in the design
rules to be applied. In keeping with the requirement for
simplicity we choose a small subset here:
• Generally we use M PoP templates — small graphs

that describe the core structure of the PoPs — Here
to illustrate the method M = 2 and we choose the
simplest possible templates, a single node, or a pair
of connected nodes, allowing us to express a require-
ment for node redundancy in a PoP.
• Generally we use K of the possible graph products:

Here to illustrate the method K = 2, and the Carte-
sian product, denoted by � and the strong product,
denoted by �, are used to express different levels of
inter PoP link redundancy.

In the language of [38], we write the graph product
that generates the core-router-level network as

G ⊗ {Hi},

where G gives the PoP-level topology, and the Hi are
chosen from the template graphs Ha = (Na, Ea) =
({1}, φ) and Hb = ({1, 2}, {(1, 2)}).

The different templates and products are assigned in
a way that satisfies a pair of simple design principles:
• more important PoPs and links carry more traffic;
• more important PoPs and links require redundancy.

We apply these principles by selecting two sets of thresh-
olds: one with M−1 node-traffic thresholds for selecting
the PoP templates to be used and one with K − 1 link-
traffic thresholds for selecting the graph product (level
of redundancy) to be used. Thus, in our example there
is one node-traffic threshold and one link-traffic thresh-
old. When the total traffic through a PoP exceeds the
node-traffic threshold we assign it a two-router PoP oth-
erwise a one-router PoP. Likewise, if a link carries more
than the link-traffic threshold it is assigned the strong
product, and otherwise the Cartesian product.

The thresholds are new parameters, however, in keep-
ing with our guiding principles they are simple, intuitive
and meaningful. It is easy to design a network with both
node and link redundancy, simply set the thresholds to
zero. Or we could assign the node-traffic threshold such
that leaf-PoPs are assigned one router, and all others
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two. Or we could choose the thresholds to be large to
ensure that the generated networks have little redun-
dancy. We could even start from the same PoP-level
graph, and generate a range of networks with different
levels of redundancy by varying the thresholds.

The elegant thing about the graph-product approach
is that we can naturally use the link capacities, or links
weights of the inter-PoP graph, in conjunction with the
template graphs Hi (which can contain labels such as
router types or models) to generate the capacities and
link weights needed in the final graph product.

The final step of the process is to introduce one more
layer of hierarchy – the above generates core or back-
bone routers. We also determine the correct number of
ARs (Aggregation Routers) by dividing the traffic by a
new parameter, the aggregation router capacity. Then
the ARs are connected redundantly to all of the core
routers in the PoP.

The process is shown in Figure 8, which shows four
PoPs in red. The templates and products shown are
applied to generate the core routers and the way ARs
are attached to the core routers.

Note, although the model used to generate popula-
tions is inconsequential at the PoP-level, it makes a dif-
ference here. A power-law population model will result
in many small and a few larger PoPs, potentially mak-
ing a dramatic difference to the number of ARs, and this
in turn affects the router-level node-degree distribution.

Graph products are a simple yet flexible method of
generating synthetic router-level topologies [38]. Here
we gave a simple set of rules that embodied the choice
of PoP templates and the requirement for redundancy
with the addition of only two parameters. However,
the technique is flexible enough to allow the formula-
tion of complex engineering requirements. We have not
yet explored all the possibilities that could be used to
construct realistic router-level topologies, but leave this
for future work.

9. DISCUSSION
In the introduction we presented six features that a

viable network synthesis algorithm should have. COLD
possesses these:

1. The networks are distinct by construction, and this
is easily checked since the labels on the nodes are not
arbitrary. We have also presented results showing
the degree of variation through confidence intervals
on observed statistics.

2. COLD uses techniques motivated directly by opera-
tor practice. One might argue that it is not exactly
what any one operator does, but there is always a
tradeoff between verisimilitude and simplicity.

3. The small number of parameters and the monotonic
relationship between parameters and network ob-

servables makes estimation possible. We have delib-
erately avoided presenting an estimation algorithm
here, as to do so properly requires more space than
is available.

4. The parameters are costs, which are intrinsically
more meaningful than, for instance, abstract graph
properties such as higher-order degree distributions.

5. COLD generates more than just a series of con-
nected nodes. It generates PoPs with internal struc-
ture; links with capacities and distances; and routers
with defined routing.

6. The PoP-level model has only four parameters, and
we have shown why at least this many were needed.
In particular, the hub cost is needed to create net-
works that could match observed instances. The
simple router-level component adds only two param-
eters.

The last point raises one additional feature: exten-
sibility. The two-level design makes it easy to extend
COLD. The two components are not strongly coupled
so we can change either one. For instance, we could
use real or measured PoP-level networks for the first
level, and construct a set of variable router-level net-
works from these.

Furthermore, the GA facilitates extension because it
is generally easy to add additional costs or constraints
to the model. For example, COLD could naturally be
extended to multiple ASes. Imagine the PoPs are in fact
cities, in which different networks may have presence.
PoPs interconnects in same cities could then be assigned
a cost, and we could run the optimization with respect
to this additional cost.

COLD is the only topology synthesis technique that
satisfies all six of the necessary criteria defined in the in-
troduction. Given more space we would have presented
a table to demonstrate this, but there are now a very
large number of alternate methods and many of them
require only a cursory examination to determine their
failings.

10. CONCLUSION
This paper presents COLD, an algorithm for gener-

ating synthetic data-network topologies motivated by
real-world design approaches. It is as simple as pos-
sible, yet tuning the input parameters allows a wide
variety of topologies to be produced mirroring those of
real-world networks.

One of the great benefits of this approach is that it al-
lows for intuitive and sensible scaling. If small networks
can be generated, so can larger networks, including net-
works with more nodes, spanning a larger area, carrying
more traffic or some combination of these.

COLD is a conceptually simple model for synthesiz-
ing networks. It relies on a complex algorithm (opti-
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mization and graph products); but we provide an open
implementation written in Matlab [39].
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